
Abstract1— Authorization in its most basic form can be

reduced to a simple question: “May a subject X access an object

Y?” The attempt to implement an adequate response to this

authorization question has produced many access control models

and mechanisms. The development of the authorization

mechanisms usually employs frameworks, which usually

implements one access control model, as a way of reusing larger

portions of software. However, some authorization requirements,

present on recent applications, have demanded for software

systems to be able to handle security policies of multiple access

control models. Industry has resolved this problem in a

pragmatic way, by using the framework to solve part of the

problem, and mingling business and the remaining authorization

concerns into the code. The main goal of this paper is to present a

comparative analysis between the existing frameworks developed

either within the academic and industry environments. This

analysis uses a motivating example to present the main industry

frameworks and consider the fulfillment of modularity,

extensibility and granularity requirements facing its suitability

for the existing access control models. This analysis included the

Esfinge Guardian framework, which is an open source

framework developed by the authors that provides mechanisms

that allows its extension to implement and combine different

authorization models.

Keywords— Software architecture, Access control,

Authorization, Metadata-based frameworks, Decoupling,

Metadata, Security, Software development, Software

engineering.

I. INTRODUCTION

CCESS control is usually referred to as a broader term
that includes authentication and authorization procedures.

The former can be defined as a procedure that confirms if the
subject is who it claims to be. The latter can be defined as a
procedure that verifies if the subject has the right privileges to
access a certain object. Even though both types of access
control procedures are interesting to investigate, the focus of
this work is on the analysis of authorization mechanisms
architectures.

During our research, we noticed that many of the existing
access control mechanisms used for developing industry
applications tend to offer more features for authentication,

E. M. Guerra, Instituto Nacional de Pesquisas Espaciais (INPE), São José
dos Campos, SP, Brasil, eduardo.guerra@inpe.br

J. O. Silva, Pontifícia Universidade Católica de São Paulo (PUC-SP), São
Paulo, SP, Brasil, silva.o.jefferson@gmail.com

C. T. Fernandes, Instituto Tecnológico da Aeronáutica (ITA), São José dos
Campos, SP, Brasil, clovis@ita.br

limiting the authorization procedures to fewer ones, usually
bounded to authorization based on roles. While it is
understandable for a great amount of effort to be used to
prevent the entrance of intruders into a system, it is still very
important to control the authorization concerns. Analogously,
a person can be allowed (authenticated) to enter a building, but
it is still very important to control which floors or rooms this
person is allowed (authorized) to go and under what
circumstances.

Online systems can be cited as an environment in which the
importance of access control has greatly increased. Software
has been increasingly being made available through web
services, requiring the control of authorization aspects of how
these services are going to be consumed.

Since the very early days of Software Engineering,
mechanisms have been developed on software systems to
provide effective authorization procedures. However,
mingling the implementation of the authorization rules with
business concerns has proven to be ineffective regarding some
software design principles, such as modularity, extensibility,
reuse, cohesion, code readability, and testability. The use of
the traditional object-oriented paradigm alone does not solve
the issue adequately, mainly because authorization has a
crosscutting nature.

The use of authorization frameworks are one of the current
academic and industry answers to this issue, because they
allow different levels of code reuse, extensibility, and
modularity. For an object-oriented developer, the usage of
these authorization frameworks implies in a learning process
of how to use each one of them. From the point of view of the
framework developer, it is vital that the application developer
can use their features without major complications, being able
to focus mainly on business tasks.

Additionally, the choice of an authorization framework
ordinarily implies that it will be bound to some specific access
control model, and once this choice is made, it becomes
difficult to incorporate new authorization requirements
belonging to others access control models. In frameworks that
uses a more granular access control mechanism, another
problem happen in parts of the system where more simple
models could be used, because it is bounded to an access
control model that is more complex than necessary

In this matter, the existing authorization frameworks
underachieve requirements of separating business from
authorization concerns appropriately. As a consequence,
developers have to improvise and craft solutions for more

A Modularity and Extensibility Analysis on

Authorization Frameworks

E. M. Guerra, J. O. Silva, and C. T. Fernandes

A

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 2015 36

complex authorization scenarios [1], or to use complex rules
definition in simple scenarios making its management
unnecessarily hard. In practice, it leads to applications where
the authorization is coupled to the business code, a clearly
undesirable situation [1]. Additionally, the existing
authorization mechanisms leave developed applications
coupled to their architecture, technology, or access control
models, making the resulting application – once coded – more
difficult to evolve [10].

The goal of this paper is to present a comparative analysis
on existing authorization frameworks, focusing on modularity,
granularity and extensibility requirements. As part of this
work contribution, it presents development-guiding principles
that can be used to perform the design and analysis of such
kind of framework. Additionally, this paper presents a solution
implemented by the authors called Esfinge Guardian, which is
a framework that allows its extension to implement different
access control models and particular authorization
requirements, not coupled to any particular technology or
architecture.

This research work can be considered an expansion of one
previous work of ours [30], where Esfinge Guardian was
presented, however this one has a strong focus on the
frameworks comparison analysis. More specifically: (i) we
provide more information on the theoretic background
presenting the access control models UCONABC and RAdAC;
(ii) we establish development guiding principles for extensible
and decoupled authorization models; (iii) we expand the
Section on the use of the Esfinge Guardian; (iv) we propose a
development guiding principles to provide a baseline for
comparison analyses among authorization frameworks,
specifically on extensibility and decoupling features.

 This work is organized as follows: Section II provides the
theoretic background on access control models and
frameworks. Section III formalizes the problems of the current
authorization framework implementations. Section IV
schematizes a motivating authorization scenario. Section V
presents how each of the main authorization solutions
implements the access control policies of Section IV. Section
VI makes a deeper analysis on academic and industry
authorization frameworks, highlighting differences related to
modularity and extensibility. Section VII concludes the paper,
highlighting the main points and contributions of this work.

II. AUTHORIZATION IN ACCESS CONTROL

FRAMEWORKS

 One way to understand authorization is as the accurate
management of three parameters: subject, resource, and
privileges [1]. That is, for a resource to be accessed, a subject
must have the right privileges. In fact, authorization is the
process that ensures that resources are only made available to
authorized subjects, and the selection of the privileges that
each subject should have brings the notion of access control
policies [3].

Access control policies are a key concept in the construction
of an access control mechanism. They are here defined as
“high-level requirements that specify how access is managed

and who may access information under what circumstances”

[2]. One example is: “Only account managers can credit
money into a client’s account”. Clearly, computers cannot

understand policies as high-level requirements. When
translated into a format that programs can understand,
authorization policies become digital policies [8].

The literature makes a distinction about the moments of
creation and use of authorization policies. Privilege
management is the process that creates and manages attributes
and policies that are used by the access control [2]. Access
control is the process responsible for the enforcement of
policies and rules [4].

The effective enforcement of policies usually requires a
mechanism, due to the complexity involved. Mechanisms
must enforce system policies for every subject request to
protected resources [16]. However, in many scenarios, in order
to implement a mechanism, it is necessary to firstly design a
model [1]. It is reasonable to think that a mechanism depend
on a model. More precisely, access control models are
mathematical formalizations of the security properties of a
system, which are used to describe and, in some cases to prove
these properties [1]. Models enter to bridge the gap between
policies and mechanisms [2].

In application development, authorization mechanisms are
many times implemented as frameworks, which can be
considered as incomplete pieces of software with some special
points that can be specialized to add application-specific
behavior [5]. Frameworks’ extension points are called hot

spots [6], which are the points that applications use for
customization. Each kind of behavior that a framework can
execute is called variability [6].

Frameworks that base their logic decisions on the class
metadata that they are working with are called metadata-based
frameworks [5]. In this type of framework, a class needs to
contain additional metadata so that the framework can
consume, process, and make the decision for which variability
to follow. In the context of object-oriented programming,
metadata is information about the program structure itself such
as classes, methods, and attributes [5].

Metadata-based frameworks’ decoupled approach has

represented an important facet in the reduction of coupling
between the framework and business application concerns. As
a general rule, it can be said that the more decoupled an
approach the more general the types of algorithms it can
execute [5]. This kind of framework can be applied for
crosscutting functionality [28], such as authorization.

The main variability that access control frameworks need to
handle is what rules should be enforced in each point of the
system. The access control mechanism should also be able to
prevent the execution of the functionality when the
authorization is not confirmed. Some frameworks use
metadata as an approach to configure the security rules related
to a code element, such as a class or a method [6].

Different needs and contexts have led the development of
many access control models and a plethora of access control
mechanisms [16]. For brevity, this work only discusses some
of the classical methods of authorization, but the architectural

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 201537

model here presented is general enough to contain other
authorization methods. Authorization methods refer to both
access control mechanisms and access control models [2]. The
following sub-sections provide a brief view about the classical
access control methods implemented by the main security
frameworks.

A. Identity-based Access Control (IBAC)

Due to the immense diversity of access control models,
some works condense many access models into a category
called IBAC [2][3][4], which despite essentially different
among themselves, they share in common that privileges are
somehow associated to the identity of the subjects.

In terms of policy enforcement, IBAC mechanisms tend to
be relatively simple, as long as they handle simple policies [2].
Their drawback is when the number of resources grows too
much [9], because it became problematic to privilege
management. In a company of thousands of employees, it is
difficult to centrally manage the creation and attribution of
privileges for this huge number of resources. Scalability
problems, like the previous example, were among the main
reasons why it was advocated for the adoption of RBAC
worldwide [7].

However, this access control model is suitable for
applications where the privilege management is distributed
among the users. For instance, when users own resources and
can control the access to them. Nevertheless, nowadays social
networks’ access control model fit into this category, where a

user can define who is allowed to access each of her resources
[24][25], such as files, photos and information.

B. Role-based Access Control (RBAC)

RBAC introduces the concept of accessing resources
mediated by roles. A role is a set of related privileges,
normally equivalent to a function performed by someone in an
enterprise organization. Instead of having the privileges
bounded directly to subjects, they are attributed to roles [10].
Roles are attributed to subjects. The inclusion of this level of
indirection immensely facilitates privilege attribution, for all a
privilege administrator has to do is to set a person up with a
role.

Although very efficient in the representation of hierarchies,
such as companies and organizations, RBAC presents
difficulties in the representation of other contexts. As an
example, consider a global organization with branches in
many countries. It could be necessary to divide the
Information Technology team into multiple sub-teams, each
team in one country administrating local resources. The
creation of the one role Administrator for all sub-teams would
not be adequate since each sub-team must only have access to
their local resources. This is known as the least privilege
principle [8]. One solution adopted by companies is to create
as many roles as the number of sub-teams. However, this
practice may lead into the role explosion problem in some
cases, when the number of roles to be created is too numerous
[9].

Another issue is that RBAC is not much adaptable to

situations that demand change according to dynamic factors.
The case of a hospital system illustrates the point. Information
about patients is confidential by law and ethical reasons. Only
the designated medical doctor must have access to the patient
information. However, there are cases in which other doctors
must attend to the patient for a matter of urgency. In these
cases, doctors must have access to the patient information, but
RBAC does not inherently deals with contextual and dynamic
authorizations.

In fact, the literature does document RBAC variations built
for dealing with dynamic situations such as Rule-based Access
Control model (RuBAC) [3]. RuBAC is essentially RBAC that
makes use of rules to create and manage roles. However, there
are those who consider that these types of adaptation change
the essence of RBAC, turning it into ABAC in disguise [2].

These sorts of situations – beyond the proposed scope of
RBAC – are normally resolved in industry by embedding the
additional access control policies into the application code
[11][12][13].

C. Attribute-based Access Control (ABAC)

ABAC introduces the notion of access control based on the
attributes of the subject, environment, and resources [14]. It
still does not have a formal definition and its description can
differ in the access control literature. For our purposes, ABAC
will be defined as “access control based on attributes and

policies. Attributes are distinguishable characteristics of users
or resources, conditions defined by an authority, or aspects of
the environment, and policies specify how to use attributes to
determine whether to grant or deny an access request” [2].

Because it is based on the attributes of authorization
entities, ABAC is generally said to be a fine-grained access
control. It also includes the environment as part of the
authorization, allowing rules to depend on other factors. It is
worth mentioning that whatever access control can be defined
with IBAC or RBAC can also be defined with ABAC [2].

Consider a hypothetical fine-grained policy: “Only account

managers of level 2 can give credit to their clients during the
working time”. The problem with fine-grained policies is that
they do not fit into the categories of IBAC and RBAC models.

ABAC mechanisms do not need to know the subject
identity to authorize an operation. Instead, they rely on the
attributes that the request proves to have [15]. In the case of
the previous example policy, the request to give credit
operation must contain that the requester is a level-2-manager,
and the request time to be within the working time.

The ABAC’s downside is that its fine-grained management
increases considerably the complexity in the management of
authorization policies [15], demanding a great effort to define
and maintain the semantics of attributes in the enterprise.

D. Policy-based Access Control (PBAC)

Although PBAC [3] is often cited as a different access
control model, it is essentially ABAC with a few differences
[16]. The question about why it was necessary to create a
slightly different model than ABAC naturally arises. The
reason is that using ABAC in its pure form does not offer any

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 2015 38

means of standardization in the communication of the
attributes [18].

Consider an attribute called organization-name. It may
happen that in one company the value of this attribute is
“Aeronautical Institute of Technology”, while in the other it

could be “A.I.T.”. Another issue is when enterprises use the

same attribute name for different things, introducing the
problem of name collapse [3].

In order to standardize the communication of attributes,
OASIS' has created a standard named eXtensible Access
Control Markup Language (XACML) [17], which is a general
purpose language in XML for the declaration and
communication of digital access control policies. Since then,
XACML has become the de facto standard for writing fine-
grained access control applications [18].

E. UCONABC

Traditionally, access control models focus on protecting
resources on the server side and do not deal with client-side
controls for locally stored digital information. Additionally,
the advent of public-key infrastructure has allowed the
authorization of subjects using models categorized as trust
management [35]. In many cases, trust management utilizes
subject properties for authorization in the form of digital
credentials or certificates.

Usage Control (UCON) is a notion, a conceptual
framework, introduced to be comprehensive enough to
encompass traditional access control, trust management, and
DRM [34] The term has some connotations, which reference
[33] present them: “In the DRM context, it conveys the sense

that digital content is provided for use of the end-user’s

system, but the provider would like to retain some control over

what the user does with the bits. In the privacy context the

situation is reversed. It is the end-user who often provides

personal information to a service provider, and would like to

control how the service provider can use that information.

Sometimes the personal information is provided by a third-

party originator, say a health-care provider, but the

individual, called ‘identifiee’, to whom it pertains, would

nevertheless like to exercise control over its use. Usage also

has a connotation of duration, so the access may continue for

some time.”

We can see some new concerns for authorizations. One
example for access control in the DRM context is the re-
distribution of a music file (e.g.: MP3) once it has been bought
from a service provider. The service provider may be able to
retain the right of distribution from the end user. One example
for access control with duration, suppose an application that
must control the use of prepaid mobile phone. In this case,
even if the subject (user) is authorized to complete the phone
call, the application must continuously check if the subject
still has the credits for continuing the call.

Park and Sandhu [33] not only use the concept of
Authorization (A), but also introduce oBligations (B), and
Conditions (C), integrating them into the conceptual
framework, forming the UCONABC access control model.
Obligations are requirements that have to be fulfilled for

allowing access. Conditions are environmental or system
requirements – related to resources – that have to be satisfied
for access.

F. Risk-Adaptive Access Control (RAdAC)

RAdAC is an emerging access control model that takes into
account risks to grant resources, being used basically in
contexts that demand large-scale computing. The RAdAC
model represents the cutting-edge model envisioned for the
new contexts of grid and cloud computing [31].

In a world that is each day more interconnected, a
differentiation in the access control must be made beyond
roles, attributes and identities [32]. Risks must be taken into
account. An example is the netbanking services that we do
customarily. The risks of accessing the netbanking services
from a trusted PC are different from the ones we take on
accessing the same services from an untrusted PC.

RAdAC is still a very recent model that needs much
research on it. Hu et al [3] have proposed a formal framework
– at a policy layer – in terms of components and their
interactions to develop abstract models for RAdAC.

G. Hybrid Authorization Models

Despite each model focus on solving the authorization
problem for a given scenario, real applications can have needs
that are not solved by a single model. In these cases, it is
important to combine models in order to fulfill the
authorization requirements.

For instance, imagine a military application where each user
has a role in a military organization, but the documents also
have a sensitivity that requires a certain privilege level from
the subject. In this scenario, in order to access a given
document, the user should have the appropriate role, the
document should be related to the organization where he is
allocated and he should have the minimum privilege level.
Based on this example, it is possible to see that different
models can be appropriate for different authorization
requirements.

In such hybrid scenarios, by using a more restrictive model,
such as RBAC, it does not cover all the authorization
requirements. However, a more general model, such as
ABAC, can be hard to manage for rules that fit better on other
models. A possible solution in such scenarios is to combine
authorization models, using each ones for the scope where it is
more appropriate. In [29] there is an example of an
authorization model that combines characteristics of RBAC
and ABAC, creating what it calls a Contextual Authorization
Model.

III. PROBLEMS IN EXISTING AUTHORIZATION

FRAMEWORKS

The basic premise of access control mechanisms is that
authorizations can be enforced in terms of subjects accessing
protected resources in a particular environment. In the
application development world, access control mechanisms
are many times implemented as frameworks. It is noteworthy
that the main security framework developers already provide

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 201539

them as metadata-based frameworks.
Although there is not much debate about the importance of

authorization, there is not still a general solution that
decouples business from authorization concerns, except for
simpler authorization policies. For more complex ones, the
existing security frameworks fall short on offering tools that
can be used declaratively, necessarily forcing developers to
craft solutions tangling business with authorization codes.

The existing authorization frameworks offer rudimentary
coding tools – or none at all – for software customization such
as Spring Framework, Java EE, and Axiomatics XACML.
These frameworks are each restricted, in the best cases, to a
few access control models – usually RBAC –, but still far
from providing means for extending to other authorization
models. In other words, they have little or non-existent
extensibility. The work of building an exhaustively complete
access control mechanism that comprised all the possible user
needs would be an impossible one. Therefore, extensibility
must have a high priority in the design of an authorization
framework architectural model.

To our best knowledge, there are not works that research
why access control developers do not invest more in ABAC
systems. However, a NIST report mentions that it is because
its many-to-many relationships are difficult to represent [2]. It
also states that the lack of more complex mechanisms
maintains enterprises using RBAC solutions, leaving the
ABAC ones on the horizon for most organizations.

Another issue about some current authorization solutions is
in the technology dependence for its instantiation. Usually,
these frameworks are coupled to some specific architecture or
other frameworks. For instance, Java EE authorization
solution can only be used in application containers and Spring
Security can only be applied to objects managed by the Spring
Frameworks, which can limit its application to a small set of
applications.

An general architectural model for authorization
frameworks is important because it provides ways to
adequately separate concerns such as code tangling and
technology dependence, representing an important step in the
move from programmatic solutions to declarative ones. If a
framework can include other framework solutions as its own,
we say that such a framework is extensible. If a framework
can be plugged in applications independently from its
architecture and from the frameworks that it uses, we say that
such a framework is technology independent.

IV. A MOTIVATING AUTHORIZATION SCENARIO

This Section schematizes a reasonable access control
scenario and it aims to show – at the next Section – how each
access control mechanism implements access control policies.
This approach helps to create a common baseline for
comparison of access control solutions and to create a more
concrete view of each implementation.

A. The Scenario Access Control Policy

Consider the following hypothetical access control policy:

“Any management position can oversee the operations

performed by any of its subordinates, but must be restrained of

overseeing the operations of their peers, their peers

subordinates, and any superior position in the bank

management hierarchy. In addition, the oversee operations

function must only be accessed from within the perimeters of

the bank facilities.”

B. Bank Career Hierarchy

For a richer comparison scenario, Fig. 1 defines a career
bank hierarchy. This organizational chart is hypothetical but
we consider it to be within the limits of reasonable.

According to the bank access control policy, a manager can
oversee operations of Clerks and Officers as long as they are
their direct subordinates, but cannot oversee operations of
other Managers, Senior Managers or any other position above
in the hierarchy. Also, all accesses must be made within the
bank facilities.

C. Access Control Policy Rationale

This authorization scenario is composed of elements
belonging to different access control models. For instance, the
organizational chart is made of roles, each having a set of
operations that they can execute. This indicates the use of
RBAC.

In addition, the access control policy mentions the oversee
operation, which has hierarchical features, which makes the
policy in compliance with the MAC model [23] or at least
with some type of hierarchical RBAC.

Finally, by limiting the execution of oversee the subordinate
operations to the inside of the bank facilities, the access
control policy uses elements of the ABAC/PBAC model,
because it depends on the access context and not only on the
subject and object. The requirement that restrict this
authorization to its subordinates also is related to this access
control model.
In this fashion, despite the apparent simplicity, the access
control policy can be considered a complex one, from the
point of view of the modularization of authorization concerns.

V. HOW EACH AUTHORIZATION FRAMEWORK
IMPLEMENTS THE SCENARIO ACCESS CONTROL POLICY?

The objective of this Section is to present how each of the
main existing solutions implements the access control policy
presented in Section IV. Since our focus is on solutions ready
to be used on industry projects, we are going to focus on
mature solutions that are accessible to use.

We have selected three of the main security industry
frameworks, that is: Java EE Security Framework; Spring
Security; and Axiomatics XACML. For each one of them we
present a possible implementation of the security policy of
Section IV. The Esfinge Guardian framework is also included
for comparison. Despite Esfinge Guardian is proposed by the
authors of this work, it is important to highlight that it is open-
source, have a comprehensive tutorial and a good automated
test coverage, being ready to be used on real applications.

For better visualization, as a convention, we stress the
authorization related code in bold on the code examples.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 2015 40

Java EE Security
The Java EE platform is the current industry standard for

building enterprise Java applications. It defines an API that
aims to simplify enterprise code development and in the
meantime to robust Authentication, Authorization,
Confidentiality, Non-Repudiation, Auditing, and Quality of
Service. The Java EE security model has the means to secure
the Web Tier, Enterprise JavaBean (EJB) Tier, and the
Enterprise Information System (EIS) Tier. For the sake of

comparison, this research only analyzes authorization in
service tiers (i.e. EJB tier).

The Java EE platform provides two ways of securing an
application: declaratively and programmatically. There is in
fact a recommendation in their tutorial for the declarative
security, which can be done via XML descriptors files or via
framework annotations.

The Java EE reference access control model is the RBAC.
However, for anything with more complexity, they offer
programmatic security. Listing 1 exemplifies a possible
implementation of the bank authorization policy of Section IV.
Java EE offers the @DeclareRoles annotation for specifying
the management roles.

In the actual implementation, this line contains all the roles
of the bank hierarchy. However, the only method made
available by the platform is the isCallerInRole(), that the
developer can use when s/he wants to discover is a certain
subject belong to a known role. Since the authorization of the
calling subject is dynamically relative to its own role, this
method does not solve the issue alone. That is the reason why
another proprietary method called canOverseeRole() is
used. This method does not only has the responsibility of
discovering which is the role of the calling subject, but also to
determine its own role is equal, lower, or higher than the
object’s role (the other employee).

@Stateless
@DeclareRoles(“{MANAGER,CLERK,OFFICER,…}”)
public class EmployeeServImpl implements EmployeeServ{

 @Resource SessionContext ctx;

 public EmplOps[] overseeAllOps(
 EmplInfo info, CallerLocation cl) {

 boolean canOversee = canOverseeRole(ctx,info);
 boolean isSub =

 info.isSubordinate(ctx.getCallerPrincipal());
 if (!canOversee || !isSub || !cl.isInside()){

 throw new SecurityException(…);
 }
 EmplOps[] empops = //logic for retrieving data
 return empops;
 }

 private boolean canOverseeRole(
 SessionContext ctx, EmplInfo info) {

 //find user role using ctx.isCallerInRole(String)
 //return if this role can oversee the employee role

 }
}

Listing 1. A possible authorization policy implementation in Java EE 6.

Another verification that needs to be performed according to
the requirements is if the employee is a subordinate from the
current user. In Java EE platform, the method
getCallerPrincipal() can be used to retrieve the current
user registered in the session. This information can be used as
a parameter to perform this check, which also needs to be
done declaratively.

Spring Security
Spring Security is a popular security framework that has the

same goals as Java EE, except that it is much more modular
and lighter. Spring Security is designed to handle
authentication and authorization requirements. In their tutorial
[20], they cite four types of security concerns that the
framework addresses: (i) authentication; (ii) web request
security; (iii) service layer; and (iv) domain object security. In
this research we focus on (iii) and (iv) security concern.

Considering the extensibility and modularity capabilities of
each framework, Spring Security 3.X represents an
enhancement when compared to Java EE 6. Although heavily
based on the RBAC model, the Spring framework offers the
possibility of accessing the application beans declaratively,
through the use of authorization annotations.

As can be seen in Listing 2, by implementing the spring
interface PermissionEvaluator it is possible to decouple
authorization code from business code, except for the
framework annotation declared on the business method, such
as shown in Listing 3. There is also some configuration to
bind these classes in the XML descriptors that we have
omitted.

public class BankPermissionEvaluator implements
 PermissionEvaluator {

 @Override

public boolean hasPermission(Authentication auth,
 Object uid, Object pid) {

 return isHierarchyCompliant(auth, uid, pid)
 && isWithinFacilities(auth, uid)

 && isSubordinate(auth, uid, pid);

 }

 private boolean isHierarchyCompliant(
 Authentication auth, Object uid, Object pid) {

 allow = /* allow based on hierarchy */
 return allow;
 }

Figure 1. A hypothetical bank career hierarchy

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 201535

 private boolean isWithinFacilities(Authentication auth,
 Object uid) {

 boolean allow = /*allow based on location*/
 return allow;
 }

 private boolean isSubordinate(Authentication auth,

 Object uid, Object pid) {
 allow = /* allow if he is a subordinate */
 return allow;
 }
}
Listing 2. A possible implementation of the authorization policy using Spring

Security.

@PreAuthorize(“hasPermission(#subject, #target) and
 hasPermission(#subject, #cl)”)

public EmplOps[] overseeAllOps(EmplInfo target,
 CallerLocation cl)

 EmplOps[] empops = //logic for retrieving data
 return empops;
}

Listing 3. Business method protected using Spring Security.

This is how the authorization would work. When business
method overseeAllOps() is invoked, the framework would
intercept the operation using aspect-orientation [26], and
redirect the flow to the code presented in Listing 3. The access
would be granted only if the method hasPermission()
present on BankPermissionEvaluator return true.

Axiomatics XACML
Axiomatics XACML is the current most popular XACML

access control platform, and it significantly facilitates the
development of fine-grained applications [37]. It standardizes
three essential aspects of the authorization process: policy
language; XACML request/response protocol; and reference
architecture. Axiomatics XACML can be seen as an
implementation of the ABAC model, or more precisely, of the
PBAC model.

One of the main advantages of this mechanism is the
structured standardized use of external authorization. By
providing a standardized language for writing authorization
policies, it is possible to apply the mechanism into multiple
tiers, having only one authorization policy description. This
increases the separation of concerns, therefore augmenting
flexibility.

The XACML language can be very fine-grained, being able
to express a significant amount of authorization scenarios and
access control models. One example is that the language can
express hierarchical relationships between roles – unlike the
other previous presented solutions. Listing 4 presents a code
snippet that uses Axiomatics XACML to send a request to
evaluate an authorization rule of the defined policy.

public boolean isEmployeeAllowed(EmplIinfo info,
 CallerLocation cl) throw SecurityException {

 try{

 //Create the connection to the service;

 ConnectionInterface pep = new MetroPEPModule();

 Properties config = new Properties();

 config.load(new FileInputStream(

 new File(“connection.properties”)));

 pep.setupConnection(config);

 //create XACML request

 SimpleRequestWrapper r = new SimpleRequestWrapper(4);

r.addSubjectAttribute(URI.create(“location”, cl));

r.addSubjectAttribute(URI.create(“role”,

subj.role()));

r.addActionAttribute(URI.create(“action-id”,

“read”));

r.addResourceAttribute(URI.create(“resource”,

info.role()));

 //Send the request and handle response

 SimpleResponseWrapper resp = pep.evaluate(r);

 return resp.isPermit();

 } catch(Exception e) {

 throw new SecurityException(e);

 }

}
Listing 4. Business method protected using Spring Security.

Listing 5 shows one possible implementation of the business
method, using solely Axiomatics XACML. It is important to
note that this solution does not define how the authorization
mechanism is plugged in the application.

public EmplOps[] overseeAllOps(EmplInfo info,

 CallerLocation cl) throw SecurityException {

 boolean allow = isEmployeeAllowed(info, cl);

 if(allow){
 EmplOps[] empops = //logic for retrieving data
 return empops;
 } else {
 throw new SecurityException(“Access Denied“);
 }

}

Listing 5. A possible implementation of the business method using
Axiomatics XACML.

.

Esfinge Guardian
The Esfinge Guardian framework is an extensible

authorization framework, fully capable of being used in the
development of any business application. Among its benefits
we can include the complete separation of business and
authorization code.

The Esfinge Guardian framework can be seen from at least
two perspectives. Since the framework completely separates
business from authorization concerns, the implementation of
the authorization logic can be delegated to experienced
developers, usually the ones with technology and business
domain background for creating and implementing business
security rules. On the other hand, once the framework has
been extended, it can be used by the other members of the
development team, which can be composed of less
experienced people.

Esfinge Guardian provides the application developer with
tools for attacking traditional development problems without
compromising its simplicity. Two design decisions are
responsible for the simplicity of the framework: (i) Esfinge
Guardian is a metadata-based framework that allows metadata
schema extension, fully capable of adapting its internal
algorithm based on the declared metadata associated with the
protected operations [30]; and (ii) the use of Domain
Annotations [21][22] allows the abstraction of complex

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 2015 42

authorization policies, factoring them with business domain
terminology.

The Esfinge Guardian framework contains ready-to-use
metadata elements and component implementations for some
of the classical access control models: RBAC, ABAC, and
MAC. These implementations can be used and combined to
represent an expressive number of authorization scenarios.
Nevertheless, the framework can be easily extended to
implement new authorization models that can be plugged in an
application through custom metadata elements, working the
same way as the existing implementations.

As with the previous authorization frameworks, we start
showing the class that contains the authorization code, which
can be seen in Listing 6. Esfinge Guardian links an
authorization annotation, @RespectHierarchy, to an
Authorizer class, HierarchyAuthorizer. This binding is
done by using the annotation @AuthorizerClass in the
definition of the authorization annotation, as presented in
Listing 7.

public class HierarchyAuthorizer implements

 Authorizer<RespectHierarchy> {

 public Boolean authorize(AuthorizationContext ctx,

 RespectHierarchy rh) {

 Set<String> roles = ctx.subject(“roles”);
 //retrieve other relevant information from ctx
 return //hierarchy authorization logic;

 }

}
Listing 6. A possible implementation of the hierarchy authorization policy

using Esfinge Guardian.

// Retention and ElementType suppressed

@AuthorizerClass(HierarchyAuthorizer.class)

public @interface RespectHierarchy {

}
Listing 7. Binding authorization annotation with the respective

implementation.

A similar structure composed by an annotation and an
authorizer class can be created to define the other rules from
the bank authorization policy. For brevity, the code for the
other annotations, @WithingHQ and @SubodinateOnly, and
their respective authorizers are omitted. These three authorizer
annotations can be added to a business method it is compliant
with the authorization policy. Listing 8 presents a possible
implementation of the business code.

@RespectHierarchy

@WithinHQ

@SubodinateOnly

public EmplOps[] overseeAllOps(EmplInfo info,

 CallerLocation cl) {

 EmplOps[] empops = //logic for retrieving data
 return empops;

}
Listing 8. A possible implementation of the business method using

Esfinge Guardian.

In the described context, what Esfinge Guardian does is: (i)
to intercept transparently the overseeAllOps() method call;

(ii) to recognize that @RespectHierarchy, @WithinHQ and
@SubodinateOnly are authorization annotations; (iii) to
populate the authorization context with subject, object and
environment information; (iv) to execute the authorization
logic to verify if the security conditions to execute the method
are satisfied; and, finally, (v) proceed or not with the method
execution according to the result. The authorization context
populator, the authorization logic and its representation on
annotations are framework hot spots, meaning that they are
extensible and can be adapted according to the software
system needs.

Further details on how to use Esfinge Guardian framework,
or on its respective architectural model, which lays the
theoretical foundations for the framework, can be found in our
previous works [30] [36].

VI. ANALYZING MODARILARITY AND EXTENSIBILITY
FEATURES OF AUTHORIZATION FRAMEWORKS

The purpose of this section is to offer a deeper analysis on
academic and industry authorization frameworks, highlighting
the main differences between them, specially related to
modularity and extensibility.

Subsection A proposes a comparison baseline for comparing
extensibility and modularity of authorization frameworks.
Subsection B focuses on the analysis of industry frameworks
and, finally, Subsection C, of academic frameworks.

A. Common Comparison Baseline

There are a considerable number of authorization solutions
in the industry and in the academic world. We have selected
three of the main industry and academic authorization
frameworks for the Java platform. However, for other
languages and platforms there are other solutions with a
similar approach.

One issue is how to establish a baseline for a proper
comparison among authorization frameworks. This is
important because authorization frameworks are designed with
different purposes, making necessary to establish the points of
comparison in order to reach a fair conclusion.

Table I proposes some requirements that must be taken into
account in the authorization frameworks’ design. They intend
to establish requirements of extensibility and modularity that
are desirable on authorization frameworks [5]. It is important
to highlight that this analysis focus on extensibility and
modularity aspects only, disregarding other equally important
quality attributes, necessary for choosing security frameworks
in real projects.

TABLE I
FRAMEWORKS DESIGN REQUIREMENTS

Req Id Description
REQ01 Authorization frameworks must provide a way for granting

authorization in a fine-grained level, considering the three basic
authorization entities: subject; resource; environment

REQ02 The authorization mechanism must be able to transparently
intercept the subject’s requests to the resources

REQ03 Authorization concerns must be completely modularized into
specific isolated units

REQ04 Authorization rules cannot depend on the location of the access
data for authorization

REQ05 The intersection of authorization and business concerns must be
declarative, and related to the business domain

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 201543

B. Industry Authorization Frameworks

This subsection presents the analysis of each industry
framework presented before guided by the requirements
presented on table I. The code examples presented on Section
V are referenced to exemplify some points.

Java EE

The Java EE Security framework specification does make a
recommendation for declarative security instead of the
programmatic approach [19]. But, it is not possible to avoid
the programmatic approach, except for systems with classic
RBAC authorization policies. The scenario authorization
policy illustrates this point: it presents a hierarchical form of
RBAC combined with geolocation based component.

We present a more systematic analysis as follows:
 REQ01 is not satisfied because Java EE does not

inherently offer any means for authorizations to be in the
fine-grained level.

 REQ02 is not satisfied because Java EE does not provide
transparent interception. Instead, the developer has to
explicitly call the security procedure, or to embed in the
business code. Listing 1 is an example.

 REQ03 is not satisfied because the authorization code
mingles with business code in non-trivial scenarios.
Listing 1 is an example.

 REQ04 is not satisfied because there is no structured way
of obtaining authorization context data in different places
such as files, databases, transactions objects, session
objects etc. The developer has to embed this logic into the
business code as well.

 REQ05 is not satisfied because all the authorization code
that is written into the business code adds nothing to the
business domain itself. This is also a result of coupling
the framework authorization code to the business class.

Spring Security
Spring Security offer means to express authorization policies

for the ABAC model, due to the use of expression languages
in its annotations. More precisely, the use of expression
languages allows a form of RuBAC model [3], which is
essentially a simplified version of ABAC.

We present a more systematic analysis as follows:
 REQ01 is partially satisfied because even though Spring

Security is able to work in the fine-grained level
theoretically, the mechanism does not scale well when the
amount of individual items to be protected is large [45].

 REQ02 is satisfied because Spring Security understands
that the target method in the resource is protected, freeing
the developer from having to explicitly call the
mechanism.

 REQ03 is partially satisfied because Spring Security
authorization annotations are related to the framework,
not to the business itself. A complex authorization policy
could make the annotations hard to read and maintain.

 REQ04 is partially satisfied. Spring Security has the
concept of Evaluators interface, which are called in
custom authorization implementations. In the best
scenario, a concrete implementation of this interface
could be used to search for authorization context data,

which can even be injected by the Spring framework.
Especially for data passed as a parameter for the method,
it would imply that the search for authorization context
data would mingle with authorization logic itself.

 REQ05 is satisfied because there are a considerable
number of scenarios in which the Spring Security
authorization annotations can carry meaning to the
business, adopting some best practices on how to write
the annotation.

Axiomatics XACML

Although this architecture is good for handling fine-grained
authorizations, when it comes to modularity there are not
much tools beyond those already provided by object-oriented
programming [37].
 REQ01 is fully satisfied. XACML is currently the best

mechanism for fine-grained authorization nowadays.
 REQ02 is not satisfied because the developer has to

explicitly make the authorization verification request.
 REQ03 is not satisfied because in the best scenario the

authorization code would be modularized into a separate
method, but an explicit call would have to be made to it
for the authorization to take place.

 REQ04 is partially satisfied. The authorization data can
be obtained from multiple places, however the software
that are instantiating the framework is responsible to
retrieve this data.

 REQ05 is not satisfied because the intersection point
between authorization and business code is an embedded
method call to the authorization code. This requirement is
about declarative, cohesive intersection with business data
such as by using domain annotations.

Esfinge Guardian
Esfinge Guardian has been developed from the start with

these requirements as a guide.
We present a more systematic analysis as follows:

 REQ01 is satisfied because Esfinge Guardian is capable
of operating in the fine-grained level in multiple scales.

 REQ02 is satisfied because Esfinge Guardian offers not
only a mechanism for transparent interception, but can
also be extended to use a different one.

 REQ03 is satisfied because authorization and business
concerns are completely modularized.

 REQ04 is satisfied because it has a component type called
Populator, which allow authorization data to be
retrieved by the framework from anywhere. The
framework provides some implementations of this kind of
component, but it can also be extended by the application
to implement custom populators.

 REQ05 is satisfied because of its support for domain
annotations, which should be created with business
meaning. Exemplifying this practice, the annotations
@RespectHierarchy, @SubordinateOnly and
@WithinHQ created on the example are not related to
Esfinge Guardian, but to the application business.

Table II summarizes the analysis.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 2015 44









































TABLE II
SUMMARY OF AUTHORIZATION FRAMEWORK COMPARISON

Req Id Related Topic
Esfinge

Guardian
Java
EE 6

Spring
Security

Axio-
matics

XACML
REQ01 Fine-grained

capability
Complete None Partial Complete

REQ02 Transparent
interception

Complete None Complete None

REQ03 Modularization
of authorization
concerns

Complete None Partial None

REQ04 Data location
independence

Complete None Partial Partial

REQ05 Cohesion with
the business
domain

Complete None Complete None

Industry authorization frameworks

C. Academic Authorization Frameworks

Sirbi and Kulkarni [38] present a discussion on the
modularization of security concerns combining the Aspect-
Oriented Programming (AOP) paradigm [26][27] with the
Spring Security framework. Even though the authors
recognize the importance of separation of concerns in their
work, they focus on showing techniques on the
implementation level, detailing how to combine AOP with
Spring Security. However, their approach is representative of
other solutions based on AOP [39][40], which covers
modularization of crosscutting concerns (REQ03), transparent
interception mechanism (REQ02), and it also offers a simple
form of RuBAC (REQ01). The other architectural
requirements presented in Table I are not covered. AOP’s

interception mechanism is based on the selection of joins
points by the pointcuts. Join points are well defined points in
the execution of a system such as method execution, method
call, attribute read, and attribute write. In the case of Spring
AOP, a join point is always equivalent to a method execution.
Pointcut is the mechanism that specifies which join points will
link aspects and classes. The Spring AOP interception
mechanism in the business layer is inherently fragile because
it is mostly based on method signatures [41]. That means, if a
business method signature X changes, there is no feedback
mechanism informing that the modularized crosscutting
concern is not being considered in X anymore [30]. Another
point in this work is that it is coupled to the Spring Security
framework.

Camargo [43] propose an implementation of authentication
and authorization concerns in AspectJ, aiming to make them
reusable for web applications based on the MVC pattern and
the Struts framework. The authors have implemented various
levels of authorization: class, method, and attribute level,
implementing the RuBAC model. Basically, the same
arguments presented for the research of Sirbi and Kulkarni
[38] apply for the work of Camargo [43], being coupled to the
Apache Struts and restricted to web applications.

Welch and Stroud [42] propose an architectural model for
modularizing security concerns using reflective security
architecture for distributed computing. They compare a third-
party application secured through inheritance and the proxy
pattern with a re-engineered version that uses bytecode
manipulation, obtaining a code reduction and a degree of

separation of concerns that is not complete. They do not
provide an access control model, but focus on presenting the
technique they used for the separation. However, it should
have the granularity of ABAC (REQ01). This inference is
necessary because we had not access to their code.
Extensibility aspects are not considered, nor cohesion with
business domain (REQ05). An interesting point is that they
critique the use of the Proxy Pattern, which is one of the
interception mechanism used by Esfinge Guardian. The
authors argue that applications that rely on this pattern for
interception are subject to the bypass problem, which is a
variant of the confinement problem [44]. In a complex
application, it is always possible that an instance of a proxied
class returned by a method invocation might not be replaced
with an instance of its proxy. The unwrapped instance would
bypass the proxy.

VII. CONCLUSION

This paper is an extension of the one previous work of ours
[30]. We provide some theoretical background, discussing the
main access control models in use nowadays. In this research,
we add a discussion on the RAdAC and UCONABC models. In
addition, we present a discussion about the current problems
in the existing authorization frameworks.

A motivating authorization scenario is proposed as a
baseline for the comparisons on the rest of the work. Despite
contrived, we believe that the proposed authorization scenario
is a reasonable one for the comparisons.

We propose an implementation of the authorization policy
for each one of the main authorization industry frameworks
along with Esfinge Guardian. For each framework, we tried to
use the best resources made available. In the case of other
approaches for implementation, an extension of this analysis
can be made considering the same requirements.

We reserve a Section for analyzing the implementation
decisions: strengths and shortcomings, focusing on
extensibility and modularity aspects. For a fairer comparison,
we propose some development guiding requirements, which
must be taken into account in the development of
authorization frameworks. Some academic authorization
frameworks are also analyzed.

The overall development time and authorization
management effort might potentially be reduced, because of
the complexity reduction in the use of the authorization rules
constructs, and due to the increased semantic cohesion created
by the use of domain annotations.

This paper is useful for software architects, framework
developers, and software developers in general, by allowing
the creation of more decoupled and extensible authorization
solutions. Software architects could benefit from the Esfinge
Guardian Architectural Model by instantiating a version of the
architecture suitable for the enterprise needs. Framework
developers could benefit by extending or re-creating the
Esfinge Guardian in another language or platform. Finally,
software developers in general could benefit from the
understanding of the techniques involved in a framework
development.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 201545

REFERENCES
[1] E. BERTINO; B. CATANIA; E. FERRARI; P. PERLASCA, “A logical

framework for reasoning about access control models.” ACM
Transactions on Information and System Security, v. 6, no. 1, pp. 71-
127, 2003.

[2] PRIVILEGE MANAGEMENT CONFERENCE COLLABORATION
TEAM. A report on the privilege (access) management workshop.
Washington, DC: NIST, 2010. (NIST-IR-7657).

[3] Hu, V. C., Ferraiolo, D. F., Kuhn D. R.: Assessment of Access Control
(NIST-IR-7316). Gaithersburg, MD (2006)

[4] Hu, V. C., Scarfone, K.: Guidelines for Access Control System
Evaluation Metrics NIST-IR-7874. Gaithersburg, MD (2012)

[5] Eduardo Guerra, Felipe Alves, Uirá Kulesza, Clovis Fernandes, A
reference architecture for organizing the internal structure of metadata-
based frameworks, Journal of Systems and Software, Volume 86, Issue
5, May 2013, Pages 1239-1256.

[6] Fayad, M., Schmidt, D. C., Johnson, R. E.: Building application
frameworks: object-oriented foundations of framework design. In:
Building application frameworks: object-oriented foundations of
framework design, New York, Wiley, 55-83 (1999)

[7] Ferraiolo, D., Kuhn R., Chandramoulli, R.: Role-based access control.
Artech House (2007)

[8] Ferraiolo, D., Kuhn, R.: Role-based Access Controls. In: Proceedings of
15th NIST-NCSC National Computer Security Conference, Baltimore,
MD, 554-563 (1992).

[9] Elliott, A. A., Knight, G. S.: Role Explosion: Acknowledging the
Problem. In: Proceedings of the 2010 International Conference on
Software Engineering Research & Practice. (2010)

[10] Sandhu, R., Ferraiolo, D.F., Kuhn, D.R.: The NIST Model for Role-
Based Access Control: Toward a Unified Standard. In: 5th ACM
Workshop Role-Based Access Control. pp. 47–63. (2000).

[11] Probst, S., Kung, J.: The need for declarative security mechanisms. In:
Proceedings of 30th Euromicro Conference, pp. 526- 531 (2004)

[12] Merz, M.: Enabling declarative security through the use of Java Data
Objects. In: Journal of Science of Computer Programming, V. 70, n. 2-3,
pp. 208-220 (2008)

[13] Bartsch, S.: Authorization Enforcement Usability Case Study. In:
ESSoS'11: Proceedings of the Third international conference on
Engineering secure software and systems, pp. 209-220 (2011)

[14] Hai-bo, S., Fan, H.: An Attribute-Based Access Control Model for Web
Services. In: PDCAT '06. Seventh International Conference on Parallel
and Distributed Computing, Applications and Technologies, pp.74-79
(2006)

[15] Peng, J., Yang, F.: Description Logic Modeling of Temporal Attribute-
Based Access Control. In: ICCE '06. First International Conference on
Communications and Electronics, pp.414-418 (2006)

[16] Hsieh, G., Foster, K., Emamali, G., Patrick, G., Marvel, L.: Using
XACML for Embedded and Fine-Grained Access Control Policy. In:
ARES '09 International Conference, pp.462-468 (2009)

[17] XACML: eXtensible Access Control Markup Language (XACML),
Version 3.0, Committee Specification 01. http://docs.oasisopen.org/
xacml/3.0/xacml-3.0-core-spec-cs-01-en.pdf (2011)

[18] Bo, L, Nan, Z., Kun, G., Kai, C.: An XACML Policy Generating
Method Based on Policy View. ICPCA 2008: 3rd International Confer.
on Pervasive Computing and Applications, v.1, pp.295-301 (2008)

[19] Java EE: Java Enterprise Edition Tutorial 6.
http://docs.oracle.com/javaee/6/tutorial/doc/bnbyl.html (2013).

[20] Spring Framework: Spring Source Community.
http://www.springsource.org/ (2013)

[21] Perillo, J., Guerra, E., Silva, J., Silveira, F., Fernandes, C.: Metadata
Modularization Using Domain Annotations. In: Workshop on
Assessment of Contemporary Modularization Techniques. V. 3, Orlando
(2009)

[22] Perillo, J., Guerra, E., Fernandes, C.: Daileon-A Tool for Enabling
Domain Annotations. In: RAM-SE '09: Proceedings of the Workshop on
AOP and Meta-Data for Software Evolution, n. 7 (2009)

[23] Trusted Computer System Evaluation Criteria (Orange Book),
Department of Defense.
http://csrc.nist.gov/publications/history/dod85.pdf (1985)

[24] Sayaf, R., Clarke D.: Access Control Models for Online Social
Networks. In: Social Network Engineering for Secure Web Data and
Services, (2012)

[25] R. Sayaf. Access control for online social networks - research summary.
In: For your eyes only conference. Brussels. (2012)

[26] Ribeiro, M., Dosea, M., Bonifácio, R., Neto, A. C., Borba, P., Soares, S.:
Analyzing Class and Crosscutting Modularity Structure Matrixes. In
Proceedings of the 21th Brazilian Symposium on Software Engineering
(SBES) (2007)

[27] Neto, A. C., Ribeiro, M., Dósea, M., Bonifácio, R., Borba, P., Soares, S.:
Semantic Dependencies and Modularity of Aspect-Oriented Software.
In: Workshop on Assessment of Contemporary Modularization
Techniques (2007)

[28] Guerra, Eduardo, Buarque, Eduardo, Fernandes, Clovis, Silveira, Fábio
(2013) A Flexible Model for Crosscutting Metadata-Based Frameworks.
Computational Science and Its Applications – ICCSA 2013, Lecture
Notes in Computer Science, V 7972, 391-407.

[29] Motta, G.H.M.B.; Furuie, S.S., "A contextual role-based access control
authorization model for electronic patient record," Information

Technology in Biomedicine, IEEE Transactions on , vol.7, no.3,
pp.202,207, Sept. 2003

[30] Silva, J., Guerra, E., Fernandes, C.: An Extensible and Decoupled
Architectural Model for Authorization Frameworks. In: Murgante, B.,
Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D.,
Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part IV. LNCS, vol.
7974, pp. 614–628. Springer, Heidelberg (2013)

[31] Kandala, S.; Sandhu, R.; Bhamidipati, V., "An Attribute Based
Framework for Risk-Adaptive Access Control Models," Availability,
Reliability and Security (ARES), 2011 Sixth International Conference
on , vol., no., pp.236,241, 22-26 Aug. 2011

[32] Ferreira, A.; Chadwick, D.; Farinha, P.; Correia, R.; Gansen Zao; Chilro,
R.; Antunes, L., "How to Securely Break into RBAC: The BTG-RBAC
Model," Computer Security Applications Conference, 2009. ACSAC
'09. Annual , vol., no., pp.23,31, 7-11 Dec. 2009

[33] PARK, J.; SANDHU, R. The UCONABC usage control model. ACM
Transactions on Information System Security, v. 0, n. 0, February, 2004.

[34] Yonggang Ding; Junhua Zou, "DRM Application in UCONABC,"
Advanced Software Engineering and Its Applications, 2008. ASEA 2008
, vol., no., pp.182,185, 13-15 Dec. 2008

[35] Srijith K. Nair, Andrew S. Tanenbaum, Gabriela Gheorghe, and Bruno
Crispo. 2008. Enforcing DRM policies across applications. In
Proceedings of the 8th ACM workshop on Digital rights management
(DRM '08). ACM, New York, NY, USA, 87-94.

[36] Silva, J. O. An Architectural Model for Access Control Frameworks
Extensible for Different Authorization. São José dos Campos, 2013.
Master’s Thesis 114f.

[37] Rissanen E, Brossard D, Slabbert A Distributed access control
management—a xacml-based approach. In: ICSOC-servicewave.
Springer, Berlin, 2009

[38] Sirbi, K.; Kulkarni, P. J. Modularization of enterprise application
security through Spring AOP. International Journal of Computer Science
& Communication, v. 1, n. 2, p. 227-231, 2010.

[39] Fernandez, L. L.; Carrillo, M. G.; Pelaez, J.; Fernandez, F. A declarative
authentication and authorization framework for convergent IMS/Web
application servers based on aspect oriented code injection. In: IMSAA
INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA
SERVICES ARCHITECTURE AND APPLICATIONS, 2, 2008,
Bangalore. Proceedings… Bangalore: IMSAA, 2008. p. 1-6.

[40] HAI-BO, S. A semantic and attribute-based framework for web services
access control. In: ISA INTERNATIONAL WORKSHOP ON
INTELLIGENT SYSTEMS AND APPLICATIONS, 2, 2010, Wuhan.
Proceedings… Wuhan: ISA, 2010, p.1-4.

[41] Silva, J. Frameworks orientados a aspectos baseados em metadados. São
José dos Campos: Aeronautics Institute of Technology (ITA), 2008.

[42] Welch, I. S.; Stroud, R. J. Re-engineering security as a crosscutting
concern. The Computer Journal, v. 46, n. 5, p. 578-589, 2003.

[43] Camargo, V. V. Frameworks transversais: definições, classificações,
arquitetura e utilização em um processo de desenvolvimento de
software. 2006. PhD’s Thesis in Computing Science – University of São
Paulo, São Carlos, 2006.

[44] Lampson, B. W. A note on the confinement problem. Communications
of ACM. v. 16, n. 10, p. 613–615, October, 1973.

[45] LU, Peng; YIN, Zhao-lin. Analysis and extension of authentication and
authorization of Acegi security framework on spring [J]. Computer
Engineering and Design, v. 6, p. 022, 2007.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 2015 46

Eduardo Martins Guerra received a PhD in Computer and
Electronic Engineering from Aeronautics Institute of
Technology - ITA in 2010. He has been working for National
Institute for Space Research since 2013 where he is an
Associate Researcher. His current research interests include
Software Engineering, Framework Development and

Application Security.

Jefferson O. Silva received a Master's degree from
Aeronautics Institute of Technology - ITA in 2013. He has
been working for Pontifícia Universidade Católica de São
Paulo - PUC-SP since 2011. He is currently a doctoral student
in Instituto de Matemática e Estatística in Universidade de São
Paulo - IME-USP. His current research interests include Social
Computing, Software Engineering, and Computer Security.

Clovis Torres Fernandes received a PhD in Computer Science
from Pontifícia Universidade Católica of Rio de Janeiro –
PUC/Rio in 1992. He has been working for Instituto
Tecnológico de Aeronáutica – ITA since 1980 where he is an
Associate Professor and Director of LAI – Learning and
Interaction Laboratory in the Computer Science Department.
His current research interests include Software Engineering,

Computers and Education and Computer Security.

ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 2, No. 1, Sep. 201547

