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Abstract— Random number generators are indispensable for a multi-
tude of tasks; from electronic games to secure communications. Most gen-
erators have been made either in software or determinist hardwired de-
vices such as the Linear-Feedback-Shift-Registers; while gaining in costs
or speed, the “random” sequences generated are actually deterministic,
obeying clear generating algorithms, despite all randomness appearance of
their outputs. From the other side, Nature presents a multitude of sources
of true randomness that can be explored. Commercial random generators
exist based on physical processes as the source of randomness. Difficulties
are always present to extract Nature’s randomness. This paper presents
guidelines for construction of a fast (telecommunication speed) Physical
Random Number Generator. It discusses the fundamental physical ele-
ments involved, technicalities of signal recording and its limitations, and
the final bit extraction. The need for randomness tests is emphasized and
the impossibility of guaranteeing true randomness of a finite sequence is
discussed.
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I. INTRODUCTION

RANDOM processes are intrinsic to Nature. This statement
is usually accepted as a fundamental truth in Physics, to-

gether with the assumption that this randomness pervades the
whole Universe. Quantum Mechanics itself is based on this ran-
domness assumption. However, these beliefs are not unanimous
[1].

A reason for this non-unanimity –even nowadays– is that
probing Nature’s randomness is a daunting task. Man’s inter-
action with a random process interferes with the process itself
or forcefully introduce filters during observation or detection
of the involved phenomenon. The obtained outcome is always
some biased picture of the fundamental process. This biasing is
mostly created by the detecting instrumentation. Another fun-
damental problem is that the finite time window necessary to
acquire data leads to samples of finite length. Being finite, they
cannot fully characterize the random-like phenomenon: mo-
mentum powers of all orders necessary to a full characteriza-
tion of a generic probability distribution cannot be obtained.
One has to be satisfied with approximate results, not with the
un-achievable idealized goal. Nevertheless, it is assumed that it
is possible to obtain records of this “filtered” and finite set of
data that passes many or all available statistical tests for a ran-
dom phenomenon. One should be satisfied if no deterministic
patterns are seen –the pragmatic approach normally used.

In a distinct way, man-made devices –consisting of electronic
circuitry or software based– designed to produce the most pos-
sible randomness are deterministic devices by principle, regard-
less the complexity level that could be associated to them [2]
such as the use of nonlinearities or superpositions of complex
processes. These Pseudo Random Number Generators (PRNG)
encompass the large majority of random generators in use nowa-
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days.
Besides the randomness necessary for security applications

other predicates are usually considered for a random number
generator, including speed and cost. Speed is the second most
desired feature, necessary for telecommunications.

Physical Random Number Generators (PhRG), by its turn,
are devices trying to harness the random characteristics inherent
to some physical phenomena. A PhRG designed to last in the
existing fast advancing technological scenario should operate in
principles that are untouched by the technology itself. As such,
technological improvements can be incorporated in the system
without modifications of the physical source being probed.

PRNGs have been widely described in the literature while
PhRG implementations are not so common. In principle,
PhRGs are free of the “deterministic” tag. Recent PhRG im-
plementations include devices recording single-photon events
[3] (detectors placed at the two ports of a beamspliter (BS)),
Nyquist electrical noise [4] and chaotic lasers [5]. These PhRG
implementations are not free of problems such as: the existence
of bounds on speed due to the need of weak laser intensities [3]
to avoid appearance of photons in both BS ports, slowness of
electrical noise based processes [4], instabilities [5]. Neverthe-
less, they are a step forward in achieving true randomness, when
compared to PRNGs.

This work shows steps necessary to construction of a Phys-
ical Random Generator (PhRG) based on the observation (fast
detection and recording) of an elementary random physical phe-
nomenon: photon number fluctuations at very short sampling
times. The discussed device is aimed to extract intrinsic short-
time intensity fluctuations of a coherent field (laser light) to pro-
duce random streams in a rate adequate for telecommunications.

II. BASIC CONDITIONS FOR LIGHT SAMPLING

A lasing device, fed by a current with a random stream of
a large number of electrons can be used as the light source
for a PhRG. A normal laser, gaseous or semiconductor, would
fulfil this condition. The light state generated by a laser is
well described by a coherent state where ⟨n⟩ = |α|2 is the av-
erage number of photons in one coherence time τc, α is the
complex laser amplitude, and the photon number variance is
σ2 = ⟨(∆n)2⟩ = ⟨n⟩; σ is the standard deviation. The prob-
ability for occurrence of n photons in a coherent state within
sampling times ∆t≪ τc is Poissonian distributed

p(n) =
e−⟨n⟩⟨n⟩n

n!
. (1)

The probabilistic occurrence of these photon numbers reflects
existing quantum fluctuations inherent to Nature and, in princi-
ple, they exist at all frequencies. The Poissonian occurrence of
photon numbers has been called light’s “shot-noise”, like bal-

Invited Paper



ENIGMA — Brazilian Journal of Information Security and Cryptography, Vol. 1, No. 1, Sep. 2014 48 

listic occurrences of independent events (e.g., ∼ rain drops on a
roof).

A single-mode laser will be discussed for this work. In the
photon shot-noise limit (where the light noise predominates
over other noise sources), intensity measurements can be per-
formed to observe short time fluctuations ∆I , that deviate from
the mean intensity ⟨I⟩ according to the Poissonian statistics (1):

√
⟨(∆I)2⟩
⟨I⟩ =

√
⟨(∆n)2⟩
⟨n⟩ → 1√

⟨n⟩
. (2)

Eq. (2) shows that the relative noise decreases as ⟨n⟩ increases.
This makes deviations from the average intensity of an intense
laser very difficult to be detectable.

A crucial characteristics associated to the statistical distribu-
tion given by (1) is that successive photon numbers, n1 and n2,
present no correlation: ⟨n1n2⟩ = ⟨n1⟩⟨n2⟩. This is the main
property that guarantees that if one is able to extract these in-
herent fluctuations to generate bits, no correlations will appear
among them.

As the physical phenomenon itself presents no bandwidth
limitation, the PhRG can be made to follow any advances in
optoelectronic technology. Usually the main speed restrictions
arise from the light detector itself and the amplification circuitry
bandwidth.

The device to be discussed [6] relies on the properties of a
coherent light state, such as the one produced by a laser work-
ing well above threshold but with a damped intensity to increase
the relative light fluctuations. This damping should be made by
gray light filters (absorbers) without decreasing the laser current
itself. This way, the coherent properties are preserved while the
relative fluctuations are increased (See Eq. (2)). It may appear
that decreasing the laser current could be a simpler way to get
the desired low intensity. However, decreasing the current to
obtain the desired light levels could put the laser close to the
lasing threshold. Close to this threshold, the photon statistics
are similar to the statistics of thermal fields. Differently from
coherent state statistics, thermal fields present photon number
correlations. These correlations are reflections of photon bunch-
ing that, given the occurrence of a photon, it is quite probable
that a second photon will occur [7]. Therefore, whenever low
intensities are desired the coherent state intensity shall not be
diminished by drastically reducing the laser current. Instead, it
should be damped with neutral filters. This avoids the mixing
with thermal field statistics. This mixing produces detrimental
features that will show up when statistical tests for randomness
become more stringent.

Eventual integration of light source and detector on the same
chip should produce the best light source and detector combina-
tion. However, this integration is not trivial nowadays but one
should expect it to become more accessible in the near future.
At the moment, coupling a laser source with a on-chip electron-
ics circuitry is the way to go.

The detection circuitry, following a fast optical detector and a
fast analog to digital conversor (AtoD) should discretize the in-
put analog signals and discriminate for signals above and below
the average intensity value. This “above” or “below” signals
will be converted in fixed amplitude signals + or −, consti-
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Figure 1. Binary levels (blue) representing an analog signal (red) varying in
time t, with a 3-bit ADC. The number of available levels, above zero, is 23 −
1. With an n-bit ADC and digital time units ∆t, the digital output values are
given by y(tk) = bn(tk)2n−1+bn−1(tk)2n−2+ . . .+b2(tk)21+b1(tk)20

(tk = k∆t). Following this rule, the notation at the plot ordinate represents the
sequence of three bits b3, b2, b1.

tuting the bit sequence. It is frequent that detection electron-
ics are not perfectly symmetric in the charging and discharging
of its circuitry. This may lead to asymmetric amplitude dis-
tributions and procedures are usually taken to minimize this
problem. One way is to work with the time derivatives of the
fluctuating signals [5], or else, a differential phase shift keying
scheme (DPSK) can be used, where the difference of two suc-
cessive modulations defines the bit, either 0 if no change occurs
or 1 if a change has occurred.

III. MESOSCOPIC STATES AND BIT RECORDING

As Eq. (2) indicates, for large intensity, the relative number
fluctuation goes to zero. Some constraints already discussed are
here repeated to emphasize general requirements to achieve the
operational level:
1) A low current, lasers deviate from the coherent state oper-
ation. Therefore, to obtain coherent states in the mesoscopic
regime (above strictly quantum but below very large intensi-
ties where fluctuations are negligible), the laser intensity is de-
creased through use of neutral filters and not by decreasing the
electronic current.
2) Usual communication detectors do not have single photon
sensitivities. Their minimum detection threshold are usually of
the order of a few hundred of photons. This indicates that one
has to utilize photon numbers, in ∆t, above ⟨n⟩∆t ∼ 103.
3) A third constraint relates to the use of fast (linear) analog-
to-digital (AtoD) recorders. An analog signal s is digitally
recorded using b bits that produce 2b levels equally spaced.
See Fig. 1. Analog signal levels occurring within bit levels are
rounded by the digital technique. The spacing between the bi-
nary levels define the available ADC’s resolution. An ADC with
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Figure 2. bσ versus ⟨n⟩∆t, for b = 8 (2b = 256 levels), in the mesoscopic
range. Inset for higher intensities. λ= 1.55µm, τc = 0.3µs, or τc/∆t= 300.
It is seen that for higher intensities, the AtoD recorder saturates (bσ < 1).

a high number of bits has an increased resolution (1/2n of the
full signal range) but usually has a decreased speed. Small bit-
number ADC (e.g., 8 bit) are usually faster and preferable, say,
for telecommunication uses.
4) Use of a single detector reduce costs and eliminates the need
for intensity balance in homodyne setups. Homodyne detection,
while presenting a simple way to eliminate the average intense
signal and extracting the desired noise, demands a constant pre-
cise balance, both optically as well as electronically, of the two
detectors. The single detector use, when optimized for extrac-
tion of signals in the desired intensity range, offers a lower cost
system without compromising speed.

A. Bits for average signal and noise

The digital recording of a laser light intensity signal as a func-
tion of time should reveal both the average signal level (or ⟨n⟩)
and the fluctuations (±σ) around the average. For high intensity,
the σ contribution for the signal gets smaller than the ADC’s
resolution and only the average signal is detected. Working in
such conditions would rule out the possibility to have a record
of σ. An ADC’s with b bits has to accommodate both average
and signals around average: ⟨n⟩∆t ± σ. Moreover, ±σ should
be detectable by the ADC. Assuming that the laser intensity
I ∝ ⟨n⟩∆t/∆t and that the optical detector operates in a linear
regime, it is expected that the relative proportion holds:

⟨n⟩∆t +σ

σ
=

2b

2bσ
→ bσ = b+ log2

σ

⟨n⟩∆t +σ
, (3)

where bσ is the number of bits “reserved” for σ (within the set
of bits b).

Fig. 2 illustrates the dependence of bσ with ⟨n⟩∆t for an
analog-to-digital recorder of b = 8. It is seen that for a few
thousands of photons a few bits bσ are available to record the
fluctuation σ. However, as the number of photons increase, the
inset shows that the analog-to-digital recorder saturates and no
bits bσ are available to record the fluctuation σ.

The operation regime for the laser should be “shot-noise”
limited, where the Poissonian statistics of light predominates
well above thermal radiation residues and electronic noises. The
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Figure 3. A shot-noise limited laser illuminates a fast light detector. After
amplification, the signals Vi are recorded within a time interval ∆t around time
ti. A processing circuit average the signals and classify each of them above or
below the average V . Random signals above or below the average value are
converted in constant voltage amplitudes V+ or V− representing the random
bits.

establishment of conditions to guarantee shot-noise operation is
not trivial. Section “Methods” sketches general guidance lines
to achieve shot-noise limited signals.

IV. PHRG’S BLOCK DIAGRAM AND COMMERCIAL
COMPONENTS

The PhRG’s block diagram is sketched on Fig. 3. A laser
with sufficient intensity to produce shot-noise limited light –
where the light noise predominates over all electronic noises–
illuminates a fast light detector. The processing units may con-
tain an ADC for fast processing. Just to consider some concrete
examples, using commercially available components, a fiber-
optic connected continuous wave (CW) laser operating in single
mode can be used, at λ= 1.550µm, bandwidth ∆ν < 477 kHz,
and with a controlled temperature of 250C; its coherence time
is tC ≃ 0.3µs. An InGaAs PIN detector could be used, with a
bandwidth ∆ν ≃ 2GHz, with a transimpedance amplifier oper-
ating under a battery power source supplying 5V and a photo-
voltage bias of 10V; the detector responsivity is 0.8A/W. The
amplified signals can be recorded by a 1GHz analog-to-digital
(AtoD) circuitry with 1Gb of memory and 8 bit resolution. The
signals are to be acquired within time windows ∆t ≃ 10−9s,
much shorter than the laser coherence time tC and, therefore,
representing the true statistics of the light fluctuations, as given
by Eq. (1). A signal processor average the signals in the AtoD
and classify the recorded data as being above or below their
average with signali = (Vi − V /|Vi − V |). Further processing
converts the signali sequences into constant amplitude signals
V+ or V− that represent the sequence of random bits. Any for-
matting can be applied to this output stream.

A. Signal simulations

The described PhRG is part of an effort [8] to develop new
cryptographic schemes. As it is not yet ready for operation,
some computer simulations will be presented for pedagogical
purposes. This way the reader can better understand the com-
ments already made.

For the moment, the ADC operation will be ignored and ana-
log signals will be treated for simplicity (for the ADC operation
just think of discretized levels). Fig. 4 shows a sample of an ana-
log CW signal (simulated as a signal taken at the amplification
output stage). Comparisons, say, at each ∆t (e.g., 2× 10−9s),
between the instantaneous obtained value for the intensity (or
an output voltage V ) with respect the average intensity produce
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the bit values biti according to the rule

signali =
Ii− I

|Ii− I|
, and biti =

1+ signali
2

. (4)

For the fluctuations within the inset in Fig. 4, rule (4)
gives the binary sequence 0,1,0,1,1,1,0,1,1,1,0,1,0,1,
0,1,0,0,1,0,1,1,1,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0,1,1,1,0,0,0,1,0,
1,0,1,1.

Figure 4. Simulation of a low laser intensity with Poissonian fluctuations as
a function of time (the Intensity units are arbitrary). Inset: Detail of the laser
intensity (log) within the small time window (in red). The red line indicates the
mean intensity value.

A PhRG should operate continuously generating bits in a
very high rate. The single laser and single detector scheme are
overly superior with respect to stability than homodyne systems
or comparison systems where two detectors are used.

V. RANDOM NUMBER SEQUENCES: GENERALITIES

Given a finite sequence of supposedly random numbers, say
the bit sequence above, one may ask if this sequence is truly
random or not.

Quite generally, a physical source of entropy or numbers se-
quences n can be characterized by a probability distribution
p(n). Equivalently, p(n) can be characterized by its moments of
all orders (e.g., ⟨n⟩, ⟨(n− ⟨n⟩)2⟩, . . .). However, being finite a
sequence could not reveal all moments of the statistical source.
Similarly, the occurrence of 0s and 1s, and distinct groups of 0
and 1 have to occur randomly. Observation of a finite sequence
of 0s and 1s may reveal group patterns in the sequence. Pat-
terns can be generated deterministically. That means that the
given finite sequence could be compressed. Differently, a true
random source should generate a sequence that, as its length in-
creases, the associated entropy will increase linearly producing
a sequence that could not be compressed.

The idea of randomness is perhaps better appreciated through
the concept of “complexity of a string” [9]: The complexity of a
string s is the length of the string’s shortest description in some
fixed universal description language. In other words, the com-
plexity of a string is defined by the length of the program that
describe that string. For example, a sequence of 106 consecu-
tive “1”s, followed by another sequence of 106 consecutive “0”s
produce a sequence of 2× 106 bits. However, a short program

such as “From i = 1 to 106, Print 1. From i = 106 +1 to 106,
Print 0 ” produces the same sequence – with a short program. In
other words, the sequence can be highly compressed and, there-
fore, is not random.

A description of s of minimal length, d(s), uses the fewest
number of characters and it is called a minimal description of s.
The length of d(s), i.e. the number of characters in the descrip-
tion, is the Kolmogorov complexity of s, written K(s) = |d(s)|.
Unfortunately, K is not a computable function [10].

Nevertheless, it is clear that, under this definition, a perfect
random sequence will need a program at least as long as the
string itself to define the string, that is to say, the sequence
cannot be compressed. Although these definitions may clarify
the difficulties involved, they do not help much in the practical
sense.

A. Statistical tests

The best one can do evaluate randomness is to apply a variety
of tests. A satisfactory sequence that passes a given test will be
said “random for that particular test”.

There are known statistical test suites developed for this pur-
pose. An example is the “A Statistical Test Suite for Ran-
dom and Pseudo-random Number Generators for Cryptographic
Applications”, described in NIST’s Special Publication 800 -
22/Revision 1:
http://csrc.nist.gov/groups/ST/toolkit/rng/
documentation-software.html .

Another one is the “DieHard” battery of tests:
http://www.stat.fsu.edu/pub/diehard/ .

VI. FROM SIGNAL DETECTION TO SIGNAL-TO-NOISE
RATIO: METHODS

This section assumes that the readers have some familiarity
with basic concepts of quantum mechanics and that some of the
cited references are to be consulted. It also supposes familiar-
ity with basic thermodynamics. Those not interested in these
formalisms should skip the derivations. However, the resulting
equations can be used; they are the end-products of the section.

The laser source characteristics adequate as an optical noise
source for a PhRG were briefly discussed. Fast detectors are
another essential part of the device. Detectors are also sources
of noise (purely shot and thermal noises) and the understanding
of the mixtures of light noise and other noises arising from de-
tectors have to be understood to allow one to control or balance
these sources and to make possible extraction of uncorrelated
bits.

Above all, detectors are an important part of our tool set to
understand the Universe. As a short comment, at the instant of
their actions, detectors define our interface between the past and
the future, in the classical view of time as a constantly moving
arrow. What they record (=past) can be checked against our
predictions (=future) of this same event and contribute to our
primary sketch of the Universe. These logs are classical, in the
sense that they can be faithfully copied. Interpretation of these
records one-by-one or, in a correlated form, gives support or
not to our immediate expectations or even to more broad con-
cepts as our views of a classical or quantum world. Therefore,
our understanding of the detector’s construction not only show

Figure 2. bσ versus ⟨n⟩∆t, for b = 8 (2b = 256 levels), in the mesoscopic
range. Inset for higher intensities. λ= 1.55µm, τc = 0.3µs, or τc/∆t= 300.
It is seen that for higher intensities, the AtoD recorder saturates (bσ < 1).

a high number of bits has an increased resolution (1/2n of the
full signal range) but usually has a decreased speed. Small bit-
number ADC (e.g., 8 bit) are usually faster and preferable, say,
for telecommunication uses.
4) Use of a single detector reduce costs and eliminates the need
for intensity balance in homodyne setups. Homodyne detection,
while presenting a simple way to eliminate the average intense
signal and extracting the desired noise, demands a constant pre-
cise balance, both optically as well as electronically, of the two
detectors. The single detector use, when optimized for extrac-
tion of signals in the desired intensity range, offers a lower cost
system without compromising speed.

A. Bits for average signal and noise

The digital recording of a laser light intensity signal as a func-
tion of time should reveal both the average signal level (or ⟨n⟩)
and the fluctuations (±σ) around the average. For high intensity,
the σ contribution for the signal gets smaller than the ADC’s
resolution and only the average signal is detected. Working in
such conditions would rule out the possibility to have a record
of σ. An ADC’s with b bits has to accommodate both average
and signals around average: ⟨n⟩∆t ± σ. Moreover, ±σ should
be detectable by the ADC. Assuming that the laser intensity
I ∝ ⟨n⟩∆t/∆t and that the optical detector operates in a linear
regime, it is expected that the relative proportion holds:

⟨n⟩∆t +σ

σ
=

2b

2bσ
→ bσ = b+ log2

σ

⟨n⟩∆t +σ
, (3)

where bσ is the number of bits “reserved” for σ (within the set
of bits b).

Fig. 2 illustrates the dependence of bσ with ⟨n⟩∆t for an
analog-to-digital recorder of b = 8. It is seen that for a few
thousands of photons a few bits bσ are available to record the
fluctuation σ. However, as the number of photons increase, the
inset shows that the analog-to-digital recorder saturates and no
bits bσ are available to record the fluctuation σ.

The operation regime for the laser should be “shot-noise”
limited, where the Poissonian statistics of light predominates
well above thermal radiation residues and electronic noises. The

itt,∆ i
i

i

V Vsignal
|V V |

−=
−

−+= VVVR ,i

V
V

laser detector

amplification and 
         processing processing

Figure 3. A shot-noise limited laser illuminates a fast light detector. After
amplification, the signals Vi are recorded within a time interval ∆t around time
ti. A processing circuit average the signals and classify each of them above or
below the average V . Random signals above or below the average value are
converted in constant voltage amplitudes V+ or V− representing the random
bits.

establishment of conditions to guarantee shot-noise operation is
not trivial. Section “Methods” sketches general guidance lines
to achieve shot-noise limited signals.

IV. PHRG’S BLOCK DIAGRAM AND COMMERCIAL
COMPONENTS

The PhRG’s block diagram is sketched on Fig. 3. A laser
with sufficient intensity to produce shot-noise limited light –
where the light noise predominates over all electronic noises–
illuminates a fast light detector. The processing units may con-
tain an ADC for fast processing. Just to consider some concrete
examples, using commercially available components, a fiber-
optic connected continuous wave (CW) laser operating in single
mode can be used, at λ= 1.550µm, bandwidth ∆ν < 477 kHz,
and with a controlled temperature of 250C; its coherence time
is tC ≃ 0.3µs. An InGaAs PIN detector could be used, with a
bandwidth ∆ν ≃ 2GHz, with a transimpedance amplifier oper-
ating under a battery power source supplying 5V and a photo-
voltage bias of 10V; the detector responsivity is 0.8A/W. The
amplified signals can be recorded by a 1GHz analog-to-digital
(AtoD) circuitry with 1Gb of memory and 8 bit resolution. The
signals are to be acquired within time windows ∆t ≃ 10−9s,
much shorter than the laser coherence time tC and, therefore,
representing the true statistics of the light fluctuations, as given
by Eq. (1). A signal processor average the signals in the AtoD
and classify the recorded data as being above or below their
average with signali = (Vi − V /|Vi − V |). Further processing
converts the signali sequences into constant amplitude signals
V+ or V− that represent the sequence of random bits. Any for-
matting can be applied to this output stream.

A. Signal simulations

The described PhRG is part of an effort [8] to develop new
cryptographic schemes. As it is not yet ready for operation,
some computer simulations will be presented for pedagogical
purposes. This way the reader can better understand the com-
ments already made.

For the moment, the ADC operation will be ignored and ana-
log signals will be treated for simplicity (for the ADC operation
just think of discretized levels). Fig. 4 shows a sample of an ana-
log CW signal (simulated as a signal taken at the amplification
output stage). Comparisons, say, at each ∆t (e.g., 2× 10−9s),
between the instantaneous obtained value for the intensity (or
an output voltage V ) with respect the average intensity produce
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their limitations but also allow us to improve them, widening
our perceptions about the Universe.

This section discusses optical detectors and, in particular, de-
tectors that operate by photo-electron absorption processes. The
optically sensitive materials used in their construction limit their
wavelength bandwidth and their amplification electronics usu-
ally impose their frequency bandwidths. Noise sources will also
be discussed as well as mathematical tools to understand their
inner-workings. Only direct detection, used for the presented
PhRG, is treated here; homodyne and heterodyne detection will
not be discussed.

Among commercial detectors are the single photon sensi-
tivity detectors, known as photon-counting detectors (SPCDM,
or single photon counting detection modules), photon multipli-
ers (PMT), and integrated semiconductor detectors known as
avalanche photo-diodes (APD). Silicon PIN detectors are also
used for low-light detection but their sensitivity is much lower
than APD’s and they are not adequate for single photon count-
ing. However, an APD can be built with a faster electronics
and have a wide use in telecommunication with a corresponding
lower cost. Less common are the cryogenic detectors operating
by photon absorption and using photon-to-thermal energy con-
version. They can have very high sensitivities and resolution
but they are slower. For a review on single-photon detectors see
[11]. This note is not concerned with single photon detectors
but with detectors for telecommunication that, apart of being
low-cost compared with single photon detectors, could be able
to detect mesoscopic number of photons. The expected photo-
electron signals at the detector output are well represented by
analog signals.

Usually, silicon APDs are optimized to work between 300
and 1100 nm, germanium between 800 and 1600 and InGaAs
from 900 to 1700nm. Only silicon APDs present dark current
low enough for commercial use in non-gated single photon de-
tectors. Non-silicon APDs can also be used in gated operation
for single-photon counting; the gate operation avoids the exces-
sive thermal noise that builds up if they were used in a continu-
ous operation and help diminishing after-pulses when operated
to be sensitive to weak avalanches [12], [13].

The detectors based on the photoelectric effect can be clas-
sified as annihilation detectors. Figs. 5 and 6 sketch the gain
mechanisms in these devices.
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Figure 6. Gain mechanism for an APD – A photon creates an electron-hole pair
in a semiconductor p-n junction. A strong field is maintained at the junction
such that these charges are accelerated and, whenever they gain energy (≥ Eg ,
the gap energy) a secondary pair will be created at the collisions. Each new pair
may contribute to create an “avalanche” of charges at the collecting outputs.
The physical structure of an APD may contain a volume where light absorp-
tion creates electron-hole pairs and an electric field separates the two kinds of
charges and sweeps one of the carriers towards a multiplication region where a
strong electric field accelerates this charge causing impact ionizations as a gain
mechanism.

A. Symmetric and asymmetric devices

Annihilation detectors differ from field detectors (antennas)
in fundamental aspects. One of them is that annihilation detec-
tors are not sensitive to the field polarization, whereas an an-
tenna is. Another difference resides in the action of the photon
annihilation and creation operators â and â+ (These are the fun-
damental quantum operators that annihilate and create photons).
In the classical limit of optics h̄ω→ 0 and, therefore, a detector
in contact with the heat bath at temperature TK may, with high
probability, gain sufficient energy to emit a photon with energy
h̄ω≪ kBTK (kB is the Boltzmann’s constant). In other words,
â and â+ will have similar contributions in the interaction pro-
cess. In the microwave range, h̄ω ∼ kBTK . In the optical range
kBTK ≪ h̄ω < 2m0c2 (the upper limit taken as the energy of
an electron-positron pair creation); therefore, the heat bath will
have a small probability to create a photon. One may also say
that in the optical range annihilation processes dominate over
creation ones—an asymmetry between these processes. Single-
photon sensitivity detectors are usually submitted to cooling
processes to further reduce the probability of dark noise or elec-
tron emission in the detector when no desired light is present.
In the optical range, the interaction between detector and field
then proceeds mainly through the electric field operator Ê(+)

(that involves only annihilation field operators).

B. Quantum Efficiency

The intrinsic bandwidth ∆ω of a detector is basically deter-
mined by the material employed to make the photocathode and
other elements such as the optical material of the collecting win-
dow. The electronic circuitry after the detecting elements will
also contribute to the effective bandwidth of the detecting sys-
tem. In general, one is interested in a detection bandwidth δω
quite narrow compared with the optical frequency ω0 of the in-
cident photons (δω≪ ω0.)

The photoelectric material is made with a very low value of
the work function (the energy necessary to extract an electron
from the material), which defines the lower limit for the de-
tectable optical frequency. The material employed in the optical
window of a cooled detector frequently defines the maximum
optical frequency detectable.
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The emission probability associated with the photoelectric ef-
fect has a conversion or quantum efficiency ηpe smaller than
unity (ηpe < 1). The quantum efficiency is measured in the av-
eraging process of converting photons to photoelectrons (elec-
trons emitted in the photoelectric effect), and is given by

⟨npe⟩= ηpe⟨n⟩ , (5)

where ⟨npe⟩ is the average number of photoelectrons emitted
and ⟨n⟩ is the average number of incident photons reaching the
detector area A. This implies that there is no assurance that a
photoelectron will appear after a given photon hits the photo-
electric material – (5) only express average quantities.

This parameter ηpe has a stochastic origin related to atomic
processes. One may interpret this uncertainty in the emission
time of an excited atom as due to stochastic fluctuations of the
vacuum electric field (existing field in the absence of photons).
ηpe < 1 also impose limitations on experiments involving pho-
ton pair detection with two detectors (coincidence detection),
because each undetected photon results in a loss of coincidence
between the detectors.

A photon detector is usually made to multiply the initial
charge ejected from the photocathode to result in a charge pulse
easily treated by conventional electronics. This amplification
process is known as the detector gain G. After this gain process
an electric current i(t) = Ge(dnpe/dt) appears at the anode.
The ratio σ between the photoelectric current density and the
incident photon intensity is

σ =
ednpe

dt

h̄ω dn
dt

=
e

h̄ω

dnpe

dn
=

e

h̄ω
ηpe . (6)

The ratio σ, known as “radiant sensitivity” of the photocathode,
is usually furnished by the detector’s maker. In a photomul-
tiplier, it can be measured extracting the charge pulse directly
from the first dynode (See Fig. 5), thus avoiding the gain mech-
anism.

C. Temporal Response; Amplification and Discrimination; For-
matting

The gain involve processes occurring in a time interval τd.
In APDs, within this time, a newly arriving photon cannot pro-
duce a distinct amplification pulse and thus produces no count
in the external electronics. τd defines the detector’s dead time.
Some new detectors, including cryogenic ones, aim to identify
the arrival of two or more photoelectrons within τd.

For some applications, such as coincidence counts between
two detectors, in order to shorten the time resolution below τd,
electronic techniques utilize the rate of increase (or decrease)
of charge variation (time derivatives during a pulse formation)
from one detector to trigger a time counter. A time is measured
when the second detector gives a signal. This way, current com-
mercial detectors may present a time resolution of ∼ 10−10s
between two events (shorter than the dead time τd).

Some noise sources contribute to degradation of the photode-
tection, among them thermionic emission (proportional to tem-
perature and dependent on specific materials) and cosmic rays.
Photodetector engineering tries to optimizes their signal to noise
ratio. Cosmic rays can be eliminated in coincidence detection,

due to the negligible probability of both detectors being excited
simultaneously. They cannot be eliminated in a single detector
but are minimized by a small detection area.

In a general way, an electronic circuit amplifies the signal
appearing after the gain process and chops some of them in a
discrimination process to reduce events that come from ther-
mal noise. Electrons emitted due to thermal emission produce
charge pulses of less intensity in the gain stage, because they
usually have much less initial kinetic energy than those pro-
duced in the photoelectric effect. This fact can be used to set a
discrimination level to result in one charge pulse for each pho-
toelectron emitted. Formatting electronics are now usually built
into many detecting systems giving approximately a standard
digital output (TTL, ECL, etc.) for each analog charge pulse
generated.

D. The Quantum Process of Photodetection (basics)

The theory of photo-detection is an area of study by itself
[14]. Some outstanding landmarks were established by Glauber
with his work on optical coherence and by Mandel on the theory
of photon statistics [15]. The reader is strongly suggested to
consult these references. In this section, a simplified approach
to the generation of photoelectrons from single photon streams,
using a phenomenological response function [16], is utilized to
introduce some readers in this subject.

An electric field quantum operator Ê(z, t) = Ê+(z, t) +
Ê−(z, t), where Ê−(z, t) = (Ê+(z, t))+, describes light prop-
agation along the z-axis in an isotropic medium with dielectric
susceptibility ϵ, where ω = kv = kc/n. For example, one could
write, for a x-polarized field

Ê
−
(z, t) = x̂

∑

ω

√
h̄ω

2ϵV
â+ω exp[−iω (z/v− t)] , (7)

where V is the quantization volume. In the classical limit, quan-
tum operators âω and â+ω become the field amplitudes a and a∗.

If one considers ω in a continuum, it may be convenient to
write the Hamiltonian Ĥ for a free mode and the number oper-
ator N̂ as

Ĥ=

∫ ∞

0
h̄ω â+(ω)â(ω) dω , N̂=

∫ ∞

0
â+(ω)â(ω) dω, (8)

where [â(ω), â+(ω′)]− = δ(ω − ω′). The practical transition
from a discrete to a continuum is made by substituting

∑
kz
→

(Lz/2π)
∫
dkz , where Lz is the quantization length of the field

and writing the quantization volume V as the product of the
mode area Ac times the length Lz = vδt (v = c/n), where
δt = 1/δν is the separation time interval between modes. Also
â(ω)→ âω/

√
δω, giving

Ê−(z, t)=
i√
2π

∫ ∞

0
dω

√
h̄ω

2ϵAcv
â+(ω) exp [−iω (z/v − t)].

(9)
As discussed previously, one is usually interested in a narrow

frequency range around the average field frequency ω0. Writing
ω = ω0 +ω′, this condition is ω′/ω0≪ 1 and in this case,

Ê−(z, t)≃ i
1√
2π

√
h̄ω

2ϵAcv
exp[iω0 (z/v− t)]
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ergy to a photoelectron in the photocathode. This electron hits the first dynode
after acceleration by a voltage difference, ejecting electrons from the material.
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their limitations but also allow us to improve them, widening
our perceptions about the Universe.

This section discusses optical detectors and, in particular, de-
tectors that operate by photo-electron absorption processes. The
optically sensitive materials used in their construction limit their
wavelength bandwidth and their amplification electronics usu-
ally impose their frequency bandwidths. Noise sources will also
be discussed as well as mathematical tools to understand their
inner-workings. Only direct detection, used for the presented
PhRG, is treated here; homodyne and heterodyne detection will
not be discussed.

Among commercial detectors are the single photon sensi-
tivity detectors, known as photon-counting detectors (SPCDM,
or single photon counting detection modules), photon multipli-
ers (PMT), and integrated semiconductor detectors known as
avalanche photo-diodes (APD). Silicon PIN detectors are also
used for low-light detection but their sensitivity is much lower
than APD’s and they are not adequate for single photon count-
ing. However, an APD can be built with a faster electronics
and have a wide use in telecommunication with a corresponding
lower cost. Less common are the cryogenic detectors operating
by photon absorption and using photon-to-thermal energy con-
version. They can have very high sensitivities and resolution
but they are slower. For a review on single-photon detectors see
[11]. This note is not concerned with single photon detectors
but with detectors for telecommunication that, apart of being
low-cost compared with single photon detectors, could be able
to detect mesoscopic number of photons. The expected photo-
electron signals at the detector output are well represented by
analog signals.

Usually, silicon APDs are optimized to work between 300
and 1100 nm, germanium between 800 and 1600 and InGaAs
from 900 to 1700nm. Only silicon APDs present dark current
low enough for commercial use in non-gated single photon de-
tectors. Non-silicon APDs can also be used in gated operation
for single-photon counting; the gate operation avoids the exces-
sive thermal noise that builds up if they were used in a continu-
ous operation and help diminishing after-pulses when operated
to be sensitive to weak avalanches [12], [13].

The detectors based on the photoelectric effect can be clas-
sified as annihilation detectors. Figs. 5 and 6 sketch the gain
mechanisms in these devices.

Energy

z

p

n+
+
+

_
_
_

photon
initial pair

avalanche

Figure 6. Gain mechanism for an APD – A photon creates an electron-hole pair
in a semiconductor p-n junction. A strong field is maintained at the junction
such that these charges are accelerated and, whenever they gain energy (≥ Eg ,
the gap energy) a secondary pair will be created at the collisions. Each new pair
may contribute to create an “avalanche” of charges at the collecting outputs.
The physical structure of an APD may contain a volume where light absorp-
tion creates electron-hole pairs and an electric field separates the two kinds of
charges and sweeps one of the carriers towards a multiplication region where a
strong electric field accelerates this charge causing impact ionizations as a gain
mechanism.

A. Symmetric and asymmetric devices

Annihilation detectors differ from field detectors (antennas)
in fundamental aspects. One of them is that annihilation detec-
tors are not sensitive to the field polarization, whereas an an-
tenna is. Another difference resides in the action of the photon
annihilation and creation operators â and â+ (These are the fun-
damental quantum operators that annihilate and create photons).
In the classical limit of optics h̄ω→ 0 and, therefore, a detector
in contact with the heat bath at temperature TK may, with high
probability, gain sufficient energy to emit a photon with energy
h̄ω≪ kBTK (kB is the Boltzmann’s constant). In other words,
â and â+ will have similar contributions in the interaction pro-
cess. In the microwave range, h̄ω ∼ kBTK . In the optical range
kBTK ≪ h̄ω < 2m0c2 (the upper limit taken as the energy of
an electron-positron pair creation); therefore, the heat bath will
have a small probability to create a photon. One may also say
that in the optical range annihilation processes dominate over
creation ones—an asymmetry between these processes. Single-
photon sensitivity detectors are usually submitted to cooling
processes to further reduce the probability of dark noise or elec-
tron emission in the detector when no desired light is present.
In the optical range, the interaction between detector and field
then proceeds mainly through the electric field operator Ê(+)

(that involves only annihilation field operators).

B. Quantum Efficiency

The intrinsic bandwidth ∆ω of a detector is basically deter-
mined by the material employed to make the photocathode and
other elements such as the optical material of the collecting win-
dow. The electronic circuitry after the detecting elements will
also contribute to the effective bandwidth of the detecting sys-
tem. In general, one is interested in a detection bandwidth δω
quite narrow compared with the optical frequency ω0 of the in-
cident photons (δω≪ ω0.)

The photoelectric material is made with a very low value of
the work function (the energy necessary to extract an electron
from the material), which defines the lower limit for the de-
tectable optical frequency. The material employed in the optical
window of a cooled detector frequently defines the maximum
optical frequency detectable.
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×
∫ ∞

−∞
dω′ â+(ω′) exp[−iω′ (z/v− t)] . (10)

The field intensity operator, Î(t) = Ê−(t)Ê+(t), is con-
nected to the photoelectric current operator Îe through a re-
sponse function D(t− t′) of the photodetector by

Îe(z, t) ≡
N̂e(t)

dt
= e

∫ ∞

−∞
dt′ D(t− t′)Ê−(z, t′)Ê+(z, t′) .

(11)
The phenomenological function D(t− t′) defines the causal

process generating the electric current in time t. If one considers
the time response of the photodetector to be much shorter than
the frequency bandwidth considered, the response time can be
approximated by D(t− t′) ≃Dδ(t− t′) and, therefore, substi-
tuting the above definitions in Eq. (11) results in

Îe(z, t) = eD
h̄ω0

4πvA

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′ â+(ω′) â(ω′′)

×exp[−i(ω′−ω′′)(z/v− t)] . (12)

The operator number for the photoelectrons and the current op-
erator for these same electrons, in this “instantaneous” response
approximation, are related by

N̂e(z)≡
∫ ∞

−∞
Îe(z, t)dt

= eD
h̄ω0

4πϵvA

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′â+(ω′) â(ω′)

×exp[−i(ω′−ω′′)z/v]

×
∫ ∞

−∞
dtexp[−i(ω′−ω′′)t]

= eD
h̄ω0

2ϵvA

∫ ∞

−∞
dω′â+(ω′)â(ω′) = eD

h̄ω0

2ϵvA
N̂. (13)

An average can be taken over the number operators for the pho-
toelectrons and for the photons, giving

D⟨N̂⟩ = 2ϵvA

eh̄ω0
⟨N̂e⟩ . (14)

Using the definition of the detector efficiency,

D =
2ϵvA

eh̄ω0

⟨N̂e⟩
⟨N̂⟩

≡ 2ϵvA

eh̄ω0
ηpe . (15)

The photoelectron current operator can now be written

Îe(z, t) = e
ηpe
2π

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′â+(ω′) â(ω′′)

×exp[−i(ω′−ω′′)(z/v− t)] , (16)

and from the definition of a Fourier transform f(t) =
(1/
√
2π)

∫∞
−∞ dωf(ω)exp iωt, one arrives at the instantaneous

photoelectron current operator

Îe(z, t) =
dN̂e

dt
= eηpeâ

+(t− z/v)â(t− z/v) . (17)

From now on z will be taken as z = 0. The number operator
â+(t)â(t) is the photon number intensity at time t (Units of â(t)
are t−1/2; see Eqs. (8)). Taking averages of the operators one
arrives at

⟨dN̂e⟩ = eηpe⟨â+(t)â(t)⟩dt ≡ R1(t)dt = dP1(t) , (18)

which defines the differential photodetection probability dP1 =
R1(t)dt for one photoelectron in t within dt. The rate of
photodetection—for single events—is then

dP1

dt
=R1(t) = eηpe⟨â+(t)â(t)⟩ . (19)

Consider a photon state |ψ⟩ in the number representation,
describing single photons at instant times t1, t2, . . . tn: |ψ⟩ =
|1t1 ,1t2 , . . .1tn⟩. Applying the photoelectron current operator
Îe to |ψ⟩, one has

Îe|ψ⟩ = eηpeâ
+(t)â(t)|1t1 ,1t2 , . . .1tn⟩

=eηpeâ
+(t)â(t)

[
â+(t1)â

+(t2) . . . â
+(tn)|0⟩

]
. (20)

Successive applications of [â(t), â+(tj)] = δ(t− tj) to the
products of operators in this equation gives

Îe|ψ⟩ = eηpeâ
+(t)

[
δ(t− t1)â

+(t2) . . . â
+(tn)

+â+(t1)â(t)â
+(t2) . . . â

+(tn)
]
|0⟩= . . .

= eηpe

(
n∑

i=1

δ(t− ti)

)
|ψ⟩, (21)

showing that the eigenvalue of the photoelectron current oper-
ator is a succession of sharp charge pulses at instants ti (this
result is qualitatively intuitive). Of course, different models for
the response function D, instead of D(t− t′) =Dδ(t− t′), give
different distributions for the resulting current. With these, the
delta pulses in Eq. (21) will be modified to pulses with less sharp
shapes. In fact, good descriptions of practical current pulses can
be achieved with simple models for D. For example, functions
that depend only on a small number of “moments” (or Fourier
components) are particularly useful; such as

D(t− t′)≃ µ√
π
e−µ2(t−t′)2 (22)

where µ is adjusted to fit charge pulses that usually depend on
the particular detection system in use.

However, Eq. (21) gives a good pictorial view of the “shot-
noise” process.

E. Photon Detection Probability and Field Distributions

A useful connection between photon number and field distri-
butions can be derived using the coherent basis representation
|α⟩ defined [14] as (ks designate modes) âks |αks⟩ = αks |αks⟩.
The coherent state |α⟩ introduced by Glauber is

|α⟩= e−|α|2/2
∞∑

n=0

αn

√
n!
|n⟩ . (23)
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In the coherent basis the average photon number will be
⟨αks |â

†
ks
âks |αks⟩ = |αks |2. A field distribution in the diago-

nal representation [14] is written P ({αks}). P ({αks}) is as-
sociated to each specific field (laser, thermal etc). A density
operator ρ for this field can be written

ρ=

∫
P ({αks})|{αks}⟩⟨{αks}|d2{αks} , (24)

and normalized with Tr[ρ] =
∫
P ({αks})d2{αks}= 1. A pho-

ton number probability distribution can be defined as

p({nks}) = Tr [ρ|{nks}⟩⟨{nks}|] . (25)

Working with these equations and summing the total number
of photons counted n=

∑
{nks}

nks , the Mandel’s relationship
connecting p(n) and P ({αks}) is obtained:

p(n)=

∫
P ({αks})

(∑
ks
|αks |2

)n

n!
e
−
∑

ks
|αks |

2

d2{αks}(26)

and for a single mode case {αks}→ α

p(n) =

∫
P (α)

|α|2n

n!
e−|α|2d2α . (27)

Several probability distributions can be calculated as, for ex-
ample,

1. Laser with amplitude and phase constant or uniform
phase

p(n) = e−⟨n⟩ ⟨n⟩n

n!
,⟨n⟩= |α|2 . (28)

2. Thermal field (random phases) (See Section VIII, Eq. 8.8.
in Ref. [14])

p(n) =
1

1+ ⟨n⟩

(
⟨n⟩

1+ ⟨n⟩

)n

. (29)

3. Superposition of laser and thermal light

p(m) =
⟨nT ⟩m

(1+ ⟨nT ⟩)m+1

×Lm

[
− ⟨nL⟩
⟨nT ⟩(1+ ⟨nT ⟩)

]
e
− ⟨nL⟩

1+⟨nT ⟩ , (30)

where Lm is the Laguerre function, ⟨nL⟩ and ⟨nT ⟩ are the
average numbers for the laser photons and thermal pho-
tons, respectively.

F. Noise considerations

The detection process has some fundamental random contri-
butions: 1) The photon absorption is statistical in nature. 2) The
immersion of detector and associated electronics in the environ-
ment at temperature TK produces electronic thermal excitations
or thermal noise that are also recorded [4]. 3) The electronic
avalanche in the gain process is statistical.

Data recording at high speeds, such as done by AtoD convert-
ers, introduce their particular error sources. Traditional techni-
cal sources of error include nonlinearities in the conversion pro-
cesses, electro-magnetic interferences, gain error produced by

A B

Figure 7. A: A real resistance R at temperature TK can be represented as a
lossless resistance R where a current I(t) appears due to the thermally excited
electrons. A voltage V (t) appears at the resistance ends. B: RLC components
in series.

amplifier distortions, offset error, and AtoD conversion errors.
Some of these may become a significant source of error. Clock
jitter, for example, introduces uncertainty in the collection time
of the signal. Fast AtoD converters may present cross-talk be-
tween the analog and digital components. Many of these error
sources can be technically reduced.

A parameter that gives a good estimate of the signal that
could be obtained under presence of fundamental noises is the
signal-to-noise ratio SNR. This ratio could be defined, in the
number basis, as the ratio of the average signal square to the
variance

SNR=
⟨n⟩2

⟨(n−⟨n⟩)2⟩
, (31)

where ⟨n⟩ is the average detected number of photons. SNR
parameters can be written for any quantity of interest such as
voltages, currents, phase and so on. As a simple warning, an-
other common use is writing SNR as the square root of (31).

G. Fluctuation spectra

Detectors are usually connected to an impedance that could
be, in the simplest case, a resistor or the effective resistance of
a pre-amplifier. Understanding the effects of the thermal noise
in this resistor by itself is important to derive the effective noise
of a detector coupled to an external circuit. Even neglecting
microscopic aspects describing the behavior of electrons in the
resistor, thermodynamic arguments and macroscopic reasonings
are of great help to understand this noise source.

A resistor R coupled to an ideal amplifier tuned at a fre-
quency ω with a bandwidth ∆ω will produce a fluctuating sig-
nal in the amplifier. This signal can be traced by the current I(t)
generated by electrons set in motion by thermal energy. A corre-
sponding fluctuating voltage emf V (t) =RI(t) will be detected
across the resistor. An equivalent circuit is shown in Fig. 7-A.
A more general circuit to represent a real resistance connected
to LC components in series is in Fig. 7-B. All components are
assumed to be at thermal equilibrium at temperature TK un-
der ergodicity conditions. A voltage Vj(t) will appear at each
j-component ends. The equipartition theorem for the energy es-
tablishes that for each degree of freedom the average energy is
kBTK/2. Therefore,

⟨1
2
LI(t)2⟩= 1

2
kBTK and ⟨1

2
CV 2

C⟩=
1

2
kBTK , (32)

where VC is the potential difference across the capacitor. Thus,

×
∫ ∞

−∞
dω′ â+(ω′) exp[−iω′ (z/v− t)] . (10)

The field intensity operator, Î(t) = Ê−(t)Ê+(t), is con-
nected to the photoelectric current operator Îe through a re-
sponse function D(t− t′) of the photodetector by

Îe(z, t) ≡
N̂e(t)

dt
= e

∫ ∞

−∞
dt′ D(t− t′)Ê−(z, t′)Ê+(z, t′) .

(11)
The phenomenological function D(t− t′) defines the causal

process generating the electric current in time t. If one considers
the time response of the photodetector to be much shorter than
the frequency bandwidth considered, the response time can be
approximated by D(t− t′) ≃Dδ(t− t′) and, therefore, substi-
tuting the above definitions in Eq. (11) results in

Îe(z, t) = eD
h̄ω0

4πvA

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′ â+(ω′) â(ω′′)

×exp[−i(ω′−ω′′)(z/v− t)] . (12)

The operator number for the photoelectrons and the current op-
erator for these same electrons, in this “instantaneous” response
approximation, are related by

N̂e(z)≡
∫ ∞

−∞
Îe(z, t)dt

= eD
h̄ω0

4πϵvA

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′â+(ω′) â(ω′)

×exp[−i(ω′−ω′′)z/v]

×
∫ ∞

−∞
dtexp[−i(ω′−ω′′)t]

= eD
h̄ω0

2ϵvA

∫ ∞

−∞
dω′â+(ω′)â(ω′) = eD

h̄ω0

2ϵvA
N̂. (13)

An average can be taken over the number operators for the pho-
toelectrons and for the photons, giving

D⟨N̂⟩ = 2ϵvA

eh̄ω0
⟨N̂e⟩ . (14)

Using the definition of the detector efficiency,

D =
2ϵvA

eh̄ω0

⟨N̂e⟩
⟨N̂⟩

≡ 2ϵvA

eh̄ω0
ηpe . (15)

The photoelectron current operator can now be written

Îe(z, t) = e
ηpe
2π

∫ ∞

−∞
dω′
∫ ∞

−∞
dω′′â+(ω′) â(ω′′)

×exp[−i(ω′−ω′′)(z/v− t)] , (16)

and from the definition of a Fourier transform f(t) =
(1/
√
2π)

∫∞
−∞ dωf(ω)exp iωt, one arrives at the instantaneous

photoelectron current operator

Îe(z, t) =
dN̂e

dt
= eηpeâ

+(t− z/v)â(t− z/v) . (17)

From now on z will be taken as z = 0. The number operator
â+(t)â(t) is the photon number intensity at time t (Units of â(t)
are t−1/2; see Eqs. (8)). Taking averages of the operators one
arrives at

⟨dN̂e⟩ = eηpe⟨â+(t)â(t)⟩dt ≡ R1(t)dt = dP1(t) , (18)

which defines the differential photodetection probability dP1 =
R1(t)dt for one photoelectron in t within dt. The rate of
photodetection—for single events—is then

dP1

dt
=R1(t) = eηpe⟨â+(t)â(t)⟩ . (19)

Consider a photon state |ψ⟩ in the number representation,
describing single photons at instant times t1, t2, . . . tn: |ψ⟩ =
|1t1 ,1t2 , . . .1tn⟩. Applying the photoelectron current operator
Îe to |ψ⟩, one has

Îe|ψ⟩ = eηpeâ
+(t)â(t)|1t1 ,1t2 , . . .1tn⟩

=eηpeâ
+(t)â(t)

[
â+(t1)â

+(t2) . . . â
+(tn)|0⟩

]
. (20)

Successive applications of [â(t), â+(tj)] = δ(t− tj) to the
products of operators in this equation gives

Îe|ψ⟩ = eηpeâ
+(t)

[
δ(t− t1)â

+(t2) . . . â
+(tn)

+â+(t1)â(t)â
+(t2) . . . â

+(tn)
]
|0⟩= . . .

= eηpe

(
n∑

i=1

δ(t− ti)

)
|ψ⟩, (21)

showing that the eigenvalue of the photoelectron current oper-
ator is a succession of sharp charge pulses at instants ti (this
result is qualitatively intuitive). Of course, different models for
the response function D, instead of D(t− t′) =Dδ(t− t′), give
different distributions for the resulting current. With these, the
delta pulses in Eq. (21) will be modified to pulses with less sharp
shapes. In fact, good descriptions of practical current pulses can
be achieved with simple models for D. For example, functions
that depend only on a small number of “moments” (or Fourier
components) are particularly useful; such as

D(t− t′)≃ µ√
π
e−µ2(t−t′)2 (22)

where µ is adjusted to fit charge pulses that usually depend on
the particular detection system in use.

However, Eq. (21) gives a good pictorial view of the “shot-
noise” process.

E. Photon Detection Probability and Field Distributions

A useful connection between photon number and field distri-
butions can be derived using the coherent basis representation
|α⟩ defined [14] as (ks designate modes) âks |αks⟩ = αks |αks⟩.
The coherent state |α⟩ introduced by Glauber is

|α⟩= e−|α|2/2
∞∑

n=0

αn

√
n!
|n⟩ . (23)
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for example

⟨I(t)2⟩= kB
L

TK (33)

Parseval’s theorem gives
∫∞
−∞ I(t)2dt=

∫∞
−∞ |Ĩ(ν)|2dν. The

average ⟨I(t)2⟩ can be expressed by

⟨I(t)2⟩ = lim
τ→∞

1

τ

∫ τ

−τ
I(t)2dt= lim

τ→∞

1

τ

∫ τ

−τ
|Ĩ(ν)|2dν

≡
∫ ∞

−∞
SI(ν)dν , (34)

where SI(ν) is the spectral density of the photo-current I(t).
Therefore, for the current In(t) caused by the thermal noise

∫ ∞

−∞
SIn(ν)dν =

kB
L

TK . (35)

Common responses from light detectors are voltage outputs.
One may want to write the SNR ratio as a function of the volt-
age

SNR=
⟨V ⟩2

⟨(V −⟨V ⟩)2⟩
=

⟨V ⟩2

⟨V 2⟩− ⟨V ⟩2 =
⟨V ⟩2

⟨(∆V )2⟩ . (36)

One then need to obtain the average and fluctuation of V to
calculate Eq. (36). For example, the current in the circuit shown
in Fig. 7-B is given by

L
d

dt
I(t)+RI(t)+

1

C

∫ t

−∞
I(t′)dt′ = V . (37)

Looking at ei2πνt (= eiωt) fluctuations, one obtains the circuit
impedance Z(ω) = V (ω)/I(ω) = R+ i

(
ωL− 1

ωC

)
. For a cir-

cuit where the energy is mostly stored in the inductance field,
one may neglect the stored charge given by

∫ t
−∞ I(t′)dt′ → 0,

that would otherwise reside in the capacitor. This gives a LR
circuit whose response extends to very high frequencies. This
gives Z = Z(ω) =R+ iωL. From Z(ω)I(ω) = V (ω) one may
infer the relationship between SI and the corresponding voltage
spectrum SV :

SV = |Z|2SI = |R+ iωL|2SI . (38)

Therefore, for the noise
∫ ∞

−∞
SIn(ν)dν =

kB
L

TK =

∫ ∞

−∞

SVn(ν)

|Z|2 dν . (39)

Considering that the frequency response associated with SVn(ν)
is uniform up to very high frequencies, one may write
SVn(ν)→ SVn(0). This gives

∫ ∞

−∞

SVn(ν)

|Z|2 dν ≃ SVn(0)

∫ ∞

−∞

1

R2 +(2πνL)2
dν

=
SVn(0)

2

1

LR
=

kB
L

TK , (40)

and therefore

SVn(ν) = SVn(0) = 2kBTKR , (41)

SIn(ν) =
SVn(ν)

R2
=

2kBTK

R
. (42)

The detector output usually goes to a bandwidth limited pre-
amplification stage, that will set the overall bandwidth limit in
frequency ∆νB . Similarly to Eq. (34), the connection between
the average ⟨V (t)2⟩ and SVn(ν) is

⟨V (t)2⟩ =
∫ ∆νB

−∆νB

SV (ν)dν = 2kBTKR

∫ ∆νB

−∆νB

dν

= 4kBTKR∆νB . (43)

This treatment exemplifies the use of fluctuations and laws of
energy equipartition to derive connections between frequency
spectra and thermodynamic quantities. Similar treatment can
be applied to distinct circuits. Eq. (43) was investigated by J. B.
Johnson in [17].

For an electric current originated from laser excitation the
instants ti will be randomly (Poissonian) distributed, and for
a given light power P the average value of the excited photo-
electron current is (see Eq. 6)

⟨Ipe(t)⟩= σP = ηpe
e

h̄ω
P . (44)

The instantaneous value IG(t) of the amplified Ipe(t) by a cir-
cuitry with a time constant tc and gain G is

IG(t) =

∫ ∞

0

e−t′/tc

tc
GIpe(t− t′)dt′ (45)

The current IG(t) will show asymmetric amplified spikes in-
stead of the point-like Dirac’s deltas and with a decaying time
given by tc.

H. Signal to noise ratio

Let us consider that the output current I(t) after an amplifier
stage of gain G, and time constant tc (e.g., tc =RC), is consti-
tuted by the sum of the current contributions given by:
1) light of average frequency ω0 with power P (t) giving the av-
erage current Gηepe⟨P (t)⟩/(h̄ω0),
2) electronic thermal excitations (Johnson’s noise) and,
3) dark current Idk generated by crystallographic defects within
the depletion region of the semiconductor being used as the
photo-sensitive material (dark currents in PIN photodiodes
could be of order ∼ 100pA or less).

In avalanche photodetectors (APD), intermediate energy lev-
els can also be populated by the electronic avalanche. These
energies would decay shortly after causing “after pulses” that
may modify substantially the photo-electron statistics. For each
detecting system used, one should understand and consider the
causes of deviations from the direct photo-current caused by the
primary photo-excitation.

Collecting the above contributions,

⟨Ie(t)⟩ ≃Gηep e
⟨P (t)⟩
h̄ω0

+ ⟨Ie,s(t)⟩+ ⟨Idk⟩ . (46)

The shot noise current will fluctuate around this mean value.
The distinction between Johnson’s noise and the electric shot

noise is not always clear. While some forms of shot noise oc-
curs even at a temperature of 0K (e.g., if originated by light’s
incidence), Johnson’s noise is caused by thermal excitations and
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Figure 8. Voltage output. The detector current is amplified with gain G; the
voltage is measured at the ends of the parallel RC circuit being probed.

do not exist at 0K. Shot noise in matter is also called ballis-
tic noise, and it is connected with processes where the mean
free path of a particle (e.g., electron) is long compared with the
atomic positions in the medium. Thermal equilibrium noise ap-
pear even with no net current present. Sometimes the physical
process is such that a clear distinction between shot and Johnson
noise cannot be made. However, for cases where this distinction
can be made more apparent, a simplified derivation can be seen
in [18].

Eq. (34) shows the connection between ⟨I2⟩ and the current
spectral density SI . For current fluctuations due to the shot
noise, this connection holds and for a narrow band SI , one ob-
tains the spectral density proportional to ⟨I⟩B:

SI(ν0)B = ⟨I2⟩= 2e⟨I⟩B . (47)

Actually, the total current density fluctuation spectrum is
given by all contributions, and considering that a gain G also
exists, combining Eqs. (47) and (46), one obtains

SI(ν) =G2ηep e
2P (ν0)

h̄ω0
+

2kBTK

R
+SIdk(ν) . (48)

Considering that samplings are taken at a specific frequency
such that the tc cutoff is very low compared to it, using Eq. (38)
one may write the mean-square voltage fluctuation

⟨∆V (t)2⟩=
∫ ∞

−∞
SI(ν) |Z(ν)|2 dν ≃ SI

∫ ∞

−∞
|Z(ν)|2 dν, (49)

where SI , from Eq. (48), includes the main contribution from
the dark noise. In general, the variance of the filtered current
fluctuation is

⟨∆I(t)2⟩=
∫ ∞

−∞
F (ω,τc)SI(ω)

dω

2π
, (50)

where F (ω,τc) is the applied linear filter.
For a detector system ending in a parallel RC combination,

where the voltage V (t) is probed between the capacitor or resis-
tor ends (see Fig. 8), the impedance Z to be inserted in Eq. (49)
is given by

1

Z
=

1

ZR
+

1

Zc
=

1

R
+

1
−i
ωC

. (51)

G

P(W)

SNR

Figure 9. SNR as a function of the optical power P and the gain G. Used
parameters are TK = 300K, h̄= 1.055× 10−34Js, kB = 1.38× 10−23J/K,
e = 1.60× 10−19C, ηep = 0.8, R = 50Ω,C = 20pF, λ = 1.55µm, Pdk =
1× 10−10W. The solid line indicates SNR values at P = 100nW and for
variable gain.

Thus
∫ ∞

−∞
|Z(ν)|2dν = 1

2

R

C
→ ⟨∆V (t)2⟩ ≃ SI(ν0)

1

2

R

C
, (52)

and therefore

⟨∆V (t)2⟩= 1

2

R

C

[
G2ηep e

2P (ν0)

h̄ω0
+
2kBTK

R
+SIdk(ν0)

]
(53)

⟨V (t)⟩=Gηep e
⟨P (ν0)⟩
h̄ω0

R . (54)

SIdk can be written using an equivalent power Pdk for the dark
noise

SIdk = eG

(
ηep e

Pdk

h̄ω

)
. (55)

Using the obtained relationships, the SNR ratio with respect
to voltage measurements is

SNR =
⟨V (t)⟩2

⟨(V (t)−⟨V (t)⟩)2⟩ =

⟨V (t)⟩2

⟨∆V (t)2⟩ =
ηep (P (ω)/(h̄ω))2RC[

1+ 2kBTK
RG2e2ηep(P (ω)/(h̄ω)) +

Pdk(ω)
GP (ω)

] . (56)

Eq. (56) is one of the main results in this section. It incor-
porates the leading aspects of the detection process and noise
from fundamental sources. It can be used as a guidance tool in
the optimization process to obtain a good signal to noise ratio,
with light effects predominating over thermal sources and oth-
ers. Fig. 9 shows SNR as a function of the optical power P and
the gain G.

As a warning, the idealized voltmeter in Fig. 8 is, in practice,
an instrument with particular noise sources. Although it is usu-
ally assumed that the voltage probes have a negligible effect on
the measurement, their influence may be detected. In particular,
for AtoD converters, one should examine the instrument’s noise
to understand its influence on the obtained data. For example,

for example

⟨I(t)2⟩= kB
L

TK (33)

Parseval’s theorem gives
∫∞
−∞ I(t)2dt=

∫∞
−∞ |Ĩ(ν)|2dν. The

average ⟨I(t)2⟩ can be expressed by

⟨I(t)2⟩ = lim
τ→∞

1

τ

∫ τ

−τ
I(t)2dt= lim

τ→∞

1

τ

∫ τ

−τ
|Ĩ(ν)|2dν

≡
∫ ∞

−∞
SI(ν)dν , (34)

where SI(ν) is the spectral density of the photo-current I(t).
Therefore, for the current In(t) caused by the thermal noise

∫ ∞

−∞
SIn(ν)dν =

kB
L

TK . (35)

Common responses from light detectors are voltage outputs.
One may want to write the SNR ratio as a function of the volt-
age

SNR=
⟨V ⟩2

⟨(V −⟨V ⟩)2⟩
=

⟨V ⟩2

⟨V 2⟩− ⟨V ⟩2 =
⟨V ⟩2

⟨(∆V )2⟩ . (36)

One then need to obtain the average and fluctuation of V to
calculate Eq. (36). For example, the current in the circuit shown
in Fig. 7-B is given by

L
d

dt
I(t)+RI(t)+

1

C

∫ t

−∞
I(t′)dt′ = V . (37)

Looking at ei2πνt (= eiωt) fluctuations, one obtains the circuit
impedance Z(ω) = V (ω)/I(ω) = R+ i

(
ωL− 1

ωC

)
. For a cir-

cuit where the energy is mostly stored in the inductance field,
one may neglect the stored charge given by

∫ t
−∞ I(t′)dt′ → 0,

that would otherwise reside in the capacitor. This gives a LR
circuit whose response extends to very high frequencies. This
gives Z = Z(ω) =R+ iωL. From Z(ω)I(ω) = V (ω) one may
infer the relationship between SI and the corresponding voltage
spectrum SV :

SV = |Z|2SI = |R+ iωL|2SI . (38)

Therefore, for the noise
∫ ∞

−∞
SIn(ν)dν =

kB
L

TK =

∫ ∞

−∞

SVn(ν)

|Z|2 dν . (39)

Considering that the frequency response associated with SVn(ν)
is uniform up to very high frequencies, one may write
SVn(ν)→ SVn(0). This gives

∫ ∞

−∞

SVn(ν)

|Z|2 dν ≃ SVn(0)

∫ ∞

−∞

1

R2 +(2πνL)2
dν

=
SVn(0)

2

1

LR
=

kB
L

TK , (40)

and therefore

SVn(ν) = SVn(0) = 2kBTKR , (41)

SIn(ν) =
SVn(ν)

R2
=

2kBTK

R
. (42)

The detector output usually goes to a bandwidth limited pre-
amplification stage, that will set the overall bandwidth limit in
frequency ∆νB . Similarly to Eq. (34), the connection between
the average ⟨V (t)2⟩ and SVn(ν) is

⟨V (t)2⟩ =
∫ ∆νB

−∆νB

SV (ν)dν = 2kBTKR

∫ ∆νB

−∆νB

dν

= 4kBTKR∆νB . (43)

This treatment exemplifies the use of fluctuations and laws of
energy equipartition to derive connections between frequency
spectra and thermodynamic quantities. Similar treatment can
be applied to distinct circuits. Eq. (43) was investigated by J. B.
Johnson in [17].

For an electric current originated from laser excitation the
instants ti will be randomly (Poissonian) distributed, and for
a given light power P the average value of the excited photo-
electron current is (see Eq. 6)

⟨Ipe(t)⟩= σP = ηpe
e

h̄ω
P . (44)

The instantaneous value IG(t) of the amplified Ipe(t) by a cir-
cuitry with a time constant tc and gain G is

IG(t) =

∫ ∞

0

e−t′/tc

tc
GIpe(t− t′)dt′ (45)

The current IG(t) will show asymmetric amplified spikes in-
stead of the point-like Dirac’s deltas and with a decaying time
given by tc.

H. Signal to noise ratio

Let us consider that the output current I(t) after an amplifier
stage of gain G, and time constant tc (e.g., tc =RC), is consti-
tuted by the sum of the current contributions given by:
1) light of average frequency ω0 with power P (t) giving the av-
erage current Gηepe⟨P (t)⟩/(h̄ω0),
2) electronic thermal excitations (Johnson’s noise) and,
3) dark current Idk generated by crystallographic defects within
the depletion region of the semiconductor being used as the
photo-sensitive material (dark currents in PIN photodiodes
could be of order ∼ 100pA or less).

In avalanche photodetectors (APD), intermediate energy lev-
els can also be populated by the electronic avalanche. These
energies would decay shortly after causing “after pulses” that
may modify substantially the photo-electron statistics. For each
detecting system used, one should understand and consider the
causes of deviations from the direct photo-current caused by the
primary photo-excitation.

Collecting the above contributions,

⟨Ie(t)⟩ ≃Gηep e
⟨P (t)⟩
h̄ω0

+ ⟨Ie,s(t)⟩+ ⟨Idk⟩ . (46)

The shot noise current will fluctuate around this mean value.
The distinction between Johnson’s noise and the electric shot

noise is not always clear. While some forms of shot noise oc-
curs even at a temperature of 0K (e.g., if originated by light’s
incidence), Johnson’s noise is caused by thermal excitations and
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sent into the detector. The detector surface was illumi-
nated to measure all the beam power but without focaliz-
ing the light in a single point to avoid a local saturation of
the detector. The diode was polarized by a 70-V reverse
applied voltage, and the photocurrent was measured by
the voltage drop over a 100! resistor. The obtained re-
sult shows a linear dependence between the photocurrent
and the input power, and from this slope the ratio 0.47
A/W was obtained, giving for the 850-nm wavelength a
quantum efficiency of (69 ! 2)%. According to the
manufacturer (EG&G) the quantum efficiency is 77%.
The difference is partially because the measured quan-
tum efficiency also includes the reflection loss by the con-
verging lenses (4%). Although slightly different than the
value mentioned in the paper, this difference in value
does not affect our conclusions.

Checks for saturation of the detector’s amplification
electronics were also performed with sets of neutral-
density filters. Optical balance between the two similar
detectors was always kept optimal. The beam centering
with a narrow slit was done first visually under observa-
tion of the transmitted beam by an infrared viewer and
then by electronic maximization. At this position the
minimum slit aperture (!7 "m) was set to keep the de-
tected signals distinct from the electronic noise level by
more than 2 dB. Furthermore, experimental results are
considered subtracting the electronic noise level #($ie)2%
point by point to provide the normalized ratios
&#($i")2% # #($ie)2%'/&#($i#)2% # #($ie)2%'.

Figure 2 shows a typical measured value of the shot
noise, obtained from the subtraction of the photocurrent
fluctuation of both photodiodes, compared with the inten-
sity noise, obtained from the sum of these fluctuations
(I $ 64.2 mA and P $ 36 mW). There is 1-dB compres-
sion over a wide range of the noise spectrum. The shape
of the curve is due to the electronic gain of the amplifiers.
In this measurement all light was focused by the lens
onto the detector surface. The electronic noise, mea-
sured without light incidence on the detectors, is (6 dB
less than the shot noise at the working frequency of 44
MHz. The curve was obtained in a HP spectrum ana-
lyzer, with a resolution bandwidth of 300 kHz and with
the same value for the video bandwidth. The optical
setup is mounted on a pneumatic table to avoid mechani-
cal interference from the ground.

In the open-slit configuration we have to add up all
the losses in the optical elements inserted in the
beam path. The antireflection coating of the lenses is a

single layer of MgF2, leaving a residual loss of 2% per el-
ement surface. The waveplate is a Newport coated half-
wave plate, giving a 1.5% loss for each surface. The po-
larizing cube, from Newport, gives 1% loss for each
surface. The mirrors are high-reflection broadband di-
electric IR coated, with a 98% reflection (Melles-Griot).
Therefore before each detector we have three lenses,
one half-wave plate, a polarizing beam splitter, and two
mirrors, adding up to a total loss of 15.8% in the beam
path.

The low-reflectivity plate P diverts a small fraction of
light to a scanning Fabry–Perot interferometer FP to
monitor the stability of the diode-laser modes being stud-
ied. Occasionally extra modes can be seen leading to dy-
namical instabilities detected both by the Fabry–Perot in-
terferometer and the spectrum analyzer. Mode jumping
usually leads to a small difference in wavelength ($)/)
( 10#4), producing a dynamical unbalance of the homo-
dyne detection system through the reflectivity depen-
dence of the polarizing beam splitter PBS on wavelength.
These small fluctuations produce number fluctuations
that are easily picked up by the detection system. No
measurement was taken during these instability periods.
One of the laser noise sources is reflections from the
whole system, including lenses L1 and L2 and the slit it-
self. This metallic slit was blackened to minimize reflec-
tions. No optical isolator was used to avoid further losses
in the system that reduce the degree of squeezing. Mea-
surements at different squeezing currents were taken to
confirm the basic dependence of the measured noise as a
function of the transverse wave vector. A set of data
taken at the injection current of 81.5 mA and wavelength
) $ 0.852 "m is analyzed in Section 4.

3. THEORY
A. Transmission Coefficients
One of the cases to be analyzed is a narrow slit placed at
position xf at the focal plane of the lens L1 of focus f trans-
mitting light at the wave vector kx $ 2*xf /)f,14 with a
bandwidth $kx $ 2*d/)f, where d is the slit aperture
and blocks all other wave vectors belonging to the same
beam. To analyze the transmitted light at these wave
vectors, we have modeled the slit as a beam splitter,15

where the noise of the transmitted fraction of the laser
beam is analyzed by the homodyne detection system, and
the lost fraction, blocked by the slit, is seen as light di-
verted to the unused output port of the beam splitter. In
the other case studied, the slit was continuously open
from a minimum aperture to another one where all trans-
mitted light was collected. The same modeling of the slit
as a beam splitter is utilized for this case.

The calculation of Tj , or Rj , starts considering the col-
limated light from the diode laser decomposed into propa-
gating Hermite–Gaussian modes that reach the slit after
being focused by the lens L1. The singly polarized elec-
tric field amplitude associated with the incoming mode
(l, m) is Elm(x, y, z), where the origin of coordinate sys-
tem is taken at the focal plane of the lens L1 ; in other
words, the lens is located at the position z $ #f. See
Fig. 3.Fig. 2. Squeezing as a function of frequency.
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Figure 10. Example of background electronic noise compared with optical
shot-noise signals for a diode laser with an external cavity. The lowest line is
the electronic level (peaks are resonances in the detecting system) and upper
lines are optical signals.
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Figure 11. Number of bits available to record the fluctuations around the aver-
age optical signal. Laser power P ∼ 100nW, ∆t= 1ns → 3 bits.

turning a light source off, one can measure the background elec-
tronic noise. Fig. 6 in [19], reproduced in Fig. 10 shows a mea-
surement of the electronic noise for a particular laser, using a
spectrum analyzer.

To record fluctuations of the optical field around the average
optical signal itself, a couple of conditions have to be obeyed:
Firstly, the average intensity reaching the detector in ∆t has to
excite it. This requires a minimum number of photons (detec-
tor dependent) and, for telecommunication detectors, here esti-
mated at ∼ 600 photons in ∆t. Assuming a detecting system
with parameters as given in Fig. 9, an attenuated laser power
of P = 100 nW, probed at intervals of 1 ns, produce an aver-
age of ∼ 780 photons. Secondly, the background noises (noises
associated to the detecting system) should give a smaller con-
tribution than the signal corresponding to the fluctuations of the
optical signal around its average. The value ⟨n⟩ (in 1 sec) is
given by the laser power (in MKS units), as P = ⟨n⟩1sh̄ω0.
Within a sampling time ∆t, the average number of photons
is ⟨n⟩∆t = ⟨n⟩∆t. Assuming ∆t ≪ τc, the standard devi-
ation σ from ⟨n⟩, or average fluctuating number of photons,
is σ∆t =

√
⟨(n−⟨n⟩)2⟩∆t =

√
⟨n⟩∆t. With an applied gain

G ∼ 100, Fig. 9 shows a SNR ∼ 600. Assuming that the
total signal fulfills all of 2b levels in the b-bits recording sys-
tem, Eq. (3) gives the available bits for the signal fluctuation

around its average for an 8-bits recording system (256 levels).
Fig. 11 shows that for P ∼ 100nW, there are ∼ 3 bits available
to record the fluctuating signal (±8 in 256 levels).

Details related to a specific laser as well as to the ADC system
used may heavily influence the final results due to the order of
magnitude variations for some parameters; case-by-case have to
be studied.

VII. CONCLUSIONS

Guidelines for construction of a basic fast multi-purpose
PhRG were described as a initial contribution for construction
of PhRGs for practical use in a variety of situations. Under-
standing the principles in these guidelines will also help the de-
velopment of PhRG miniaturizations; speed gain and reduction
in cost are to be expected.
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sent into the detector. The detector surface was illumi-
nated to measure all the beam power but without focaliz-
ing the light in a single point to avoid a local saturation of
the detector. The diode was polarized by a 70-V reverse
applied voltage, and the photocurrent was measured by
the voltage drop over a 100! resistor. The obtained re-
sult shows a linear dependence between the photocurrent
and the input power, and from this slope the ratio 0.47
A/W was obtained, giving for the 850-nm wavelength a
quantum efficiency of (69 ! 2)%. According to the
manufacturer (EG&G) the quantum efficiency is 77%.
The difference is partially because the measured quan-
tum efficiency also includes the reflection loss by the con-
verging lenses (4%). Although slightly different than the
value mentioned in the paper, this difference in value
does not affect our conclusions.

Checks for saturation of the detector’s amplification
electronics were also performed with sets of neutral-
density filters. Optical balance between the two similar
detectors was always kept optimal. The beam centering
with a narrow slit was done first visually under observa-
tion of the transmitted beam by an infrared viewer and
then by electronic maximization. At this position the
minimum slit aperture (!7 "m) was set to keep the de-
tected signals distinct from the electronic noise level by
more than 2 dB. Furthermore, experimental results are
considered subtracting the electronic noise level #($ie)2%
point by point to provide the normalized ratios
&#($i")2% # #($ie)2%'/&#($i#)2% # #($ie)2%'.

Figure 2 shows a typical measured value of the shot
noise, obtained from the subtraction of the photocurrent
fluctuation of both photodiodes, compared with the inten-
sity noise, obtained from the sum of these fluctuations
(I $ 64.2 mA and P $ 36 mW). There is 1-dB compres-
sion over a wide range of the noise spectrum. The shape
of the curve is due to the electronic gain of the amplifiers.
In this measurement all light was focused by the lens
onto the detector surface. The electronic noise, mea-
sured without light incidence on the detectors, is (6 dB
less than the shot noise at the working frequency of 44
MHz. The curve was obtained in a HP spectrum ana-
lyzer, with a resolution bandwidth of 300 kHz and with
the same value for the video bandwidth. The optical
setup is mounted on a pneumatic table to avoid mechani-
cal interference from the ground.

In the open-slit configuration we have to add up all
the losses in the optical elements inserted in the
beam path. The antireflection coating of the lenses is a

single layer of MgF2, leaving a residual loss of 2% per el-
ement surface. The waveplate is a Newport coated half-
wave plate, giving a 1.5% loss for each surface. The po-
larizing cube, from Newport, gives 1% loss for each
surface. The mirrors are high-reflection broadband di-
electric IR coated, with a 98% reflection (Melles-Griot).
Therefore before each detector we have three lenses,
one half-wave plate, a polarizing beam splitter, and two
mirrors, adding up to a total loss of 15.8% in the beam
path.

The low-reflectivity plate P diverts a small fraction of
light to a scanning Fabry–Perot interferometer FP to
monitor the stability of the diode-laser modes being stud-
ied. Occasionally extra modes can be seen leading to dy-
namical instabilities detected both by the Fabry–Perot in-
terferometer and the spectrum analyzer. Mode jumping
usually leads to a small difference in wavelength ($)/)
( 10#4), producing a dynamical unbalance of the homo-
dyne detection system through the reflectivity depen-
dence of the polarizing beam splitter PBS on wavelength.
These small fluctuations produce number fluctuations
that are easily picked up by the detection system. No
measurement was taken during these instability periods.
One of the laser noise sources is reflections from the
whole system, including lenses L1 and L2 and the slit it-
self. This metallic slit was blackened to minimize reflec-
tions. No optical isolator was used to avoid further losses
in the system that reduce the degree of squeezing. Mea-
surements at different squeezing currents were taken to
confirm the basic dependence of the measured noise as a
function of the transverse wave vector. A set of data
taken at the injection current of 81.5 mA and wavelength
) $ 0.852 "m is analyzed in Section 4.

3. THEORY
A. Transmission Coefficients
One of the cases to be analyzed is a narrow slit placed at
position xf at the focal plane of the lens L1 of focus f trans-
mitting light at the wave vector kx $ 2*xf /)f,14 with a
bandwidth $kx $ 2*d/)f, where d is the slit aperture
and blocks all other wave vectors belonging to the same
beam. To analyze the transmitted light at these wave
vectors, we have modeled the slit as a beam splitter,15

where the noise of the transmitted fraction of the laser
beam is analyzed by the homodyne detection system, and
the lost fraction, blocked by the slit, is seen as light di-
verted to the unused output port of the beam splitter. In
the other case studied, the slit was continuously open
from a minimum aperture to another one where all trans-
mitted light was collected. The same modeling of the slit
as a beam splitter is utilized for this case.

The calculation of Tj , or Rj , starts considering the col-
limated light from the diode laser decomposed into propa-
gating Hermite–Gaussian modes that reach the slit after
being focused by the lens L1. The singly polarized elec-
tric field amplitude associated with the incoming mode
(l, m) is Elm(x, y, z), where the origin of coordinate sys-
tem is taken at the focal plane of the lens L1 ; in other
words, the lens is located at the position z $ #f. See
Fig. 3.Fig. 2. Squeezing as a function of frequency.
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Figure 10. Example of background electronic noise compared with optical
shot-noise signals for a diode laser with an external cavity. The lowest line is
the electronic level (peaks are resonances in the detecting system) and upper
lines are optical signals.
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Figure 11. Number of bits available to record the fluctuations around the aver-
age optical signal. Laser power P ∼ 100nW, ∆t= 1ns → 3 bits.

turning a light source off, one can measure the background elec-
tronic noise. Fig. 6 in [19], reproduced in Fig. 10 shows a mea-
surement of the electronic noise for a particular laser, using a
spectrum analyzer.

To record fluctuations of the optical field around the average
optical signal itself, a couple of conditions have to be obeyed:
Firstly, the average intensity reaching the detector in ∆t has to
excite it. This requires a minimum number of photons (detec-
tor dependent) and, for telecommunication detectors, here esti-
mated at ∼ 600 photons in ∆t. Assuming a detecting system
with parameters as given in Fig. 9, an attenuated laser power
of P = 100 nW, probed at intervals of 1 ns, produce an aver-
age of ∼ 780 photons. Secondly, the background noises (noises
associated to the detecting system) should give a smaller con-
tribution than the signal corresponding to the fluctuations of the
optical signal around its average. The value ⟨n⟩ (in 1 sec) is
given by the laser power (in MKS units), as P = ⟨n⟩1sh̄ω0.
Within a sampling time ∆t, the average number of photons
is ⟨n⟩∆t = ⟨n⟩∆t. Assuming ∆t ≪ τc, the standard devi-
ation σ from ⟨n⟩, or average fluctuating number of photons,
is σ∆t =

√
⟨(n−⟨n⟩)2⟩∆t =

√
⟨n⟩∆t. With an applied gain

G ∼ 100, Fig. 9 shows a SNR ∼ 600. Assuming that the
total signal fulfills all of 2b levels in the b-bits recording sys-
tem, Eq. (3) gives the available bits for the signal fluctuation

around its average for an 8-bits recording system (256 levels).
Fig. 11 shows that for P ∼ 100nW, there are ∼ 3 bits available
to record the fluctuating signal (±8 in 256 levels).

Details related to a specific laser as well as to the ADC system
used may heavily influence the final results due to the order of
magnitude variations for some parameters; case-by-case have to
be studied.

VII. CONCLUSIONS

Guidelines for construction of a basic fast multi-purpose
PhRG were described as a initial contribution for construction
of PhRGs for practical use in a variety of situations. Under-
standing the principles in these guidelines will also help the de-
velopment of PhRG miniaturizations; speed gain and reduction
in cost are to be expected.
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